测量的目的是确定被测量值或获取测量结果。有测量必然存在测量误差,在经典的误差理论中,由于被测量自身定义和测量手段的不完善,使得真值不可知,造成严格意义上的测量误差不可求。
简称误差,是指“测得的量值减去参考量值。”
简称系统误差,是指“在重复测量中保持恒定不变或按可预见的方式变化的测量误差的分量。”
系统测量误差的参考量值是真值,或是测量不确定度可忽略不计的测量标准的测量值,
或是约定量值。系统测量误差及其来源可以是已知的或未知的。对于已知的系统测量误差可
以采用修正来补偿。系统测量误差等于测量误差减随机测量误差。
简称随机误差,是指“在重复测量中按不可预见的方式变化的测量误差的分量。”
随机测量误差的参考量值是对同一个被测量由无穷多次重复测量得到的平均值。随机测量误差等于测量误差减系统测量误差。
测量误差示意图
简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。”
测量不确定度一般由若干分量组成。其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。
是“以标准偏差表示的测量不确定度。”
标准不确定度(全称为标准测量不确定度)可采用A类标准不确定度、B类标准不确定度及合成标准不确定度、相对合成标准不确定度等表示。
测量不确定度的A类评定,简称A类评定,是指“对在规定测量条件下测得的量值用统计分析的方法进行的测量不确定度分量的评定。”
测量不确定度的B类评定,简称B类评定,是指“用不同于测量不确定度A类评定的方法进行的测量不确定度分量的评定。”
全称合成标准测量不确定度,是指“由在一个测量模型中各输入量的标准测量不确定度获得的输出量的标准测量不确定度。”
全称相对标准测量不确定度,是指“标准不确定度除以测得值的绝对值。”
是指“在方差的计算中,和的项数减去对和的限制数。”
全称扩展测量不确定度,是指“合成标准不确定度与一个大于1的数字因子的乘积。”
是指“基于可获信息确定的包含被测量一组值的区间,被测量值以一定概率落在该区间内。”
包含概率是指“在规定的包含区间内包含被测量的一组值的概率。”
包含因子是指“为获得扩展不确定度,对合成标准不确定度所乘的大于1的数。”包含因子有时也称扩展因子,用符号k表示。
表1 表示测量不确定度常用的名称及符号
名 称 |
符 号 |
说 明 |
标准不确定度 |
u 或 u(x i ) |
|
相对标准不确定度 |
u rel |
rel —— 表示 “ 相对 ” 的英文字母的缩写。 |
测量不确定度的 A 类评定 |
u A 或 u A ( x i ) |
|
测量不确定度的 B 类评定 |
u B 或 u B ( x i ) |
|
合成标准不确定度 |
u c 或 u c ( y ) |
|
相对合成标准不确定度 |
u crel 或 u crel ( y ) |
|
扩展不确定度 |
U 或 U p |
U p —— 包含概率为 p 的扩展不确定度 |
相对扩展不确定度 |
U rel 或 U p rel |
|
包含因子 |
k 或 k p |
k p —— 包含概率为 p 的包含因子 |
包含概率 |
p |
如, p = 95% , p = 99% 。 |
有效自由度 |
v eff |
eff —— 表示 “ 有效 ” 的英文字母的缩写。 |
注:① 表中A、B、c、rel、eff为正体; x 、 y 、 k 、 i 、 p 、 n 、 u 、 U 为斜体。
② 表中大写 U 表示扩展不确定度;小写 u 表示标准不确定度,如:
标准不确定度A类评定:uA
标准不确定度B类评定:uB
合成标准不确定度,uc或uc (y)
扩展或相对扩展不确定度,U或Up、Urel或Uprel
是指测量中涉及的所有已知量间的数学关系。测量模型简称模型。
测量模型的通用形式是方程: f ( Y , X 1 , … , Xn ) = 0 , 其中测量模型中的输出量 Y是被测量,其量值由测量模型中输入量X 1 , … , Xn 的有关信息推导得到。在测量模型中,输入量与输出量间的函数关系又称测量函数。
建立测量模型,即被测量与各输入量之间的函数关系。若Y的测量结果为 y , 输入量 X i 的估计值为 x i ,则 y=f ( x 1 ,x 2 ,…,x n ) 。
在建立模型时要注意有一些潜在的不确定度来源不能明显地呈现在上述函数关系中,它们对测量结果本身有影响,但由于缺乏必要的信息无法写出它们与被测量的函数关系,因此在具体测量时无法定量地计算出它们对测量结果影响的大小,在计算公式中只能将其忽略而作为不确定度处理。
测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此必要时应尽可能画出测量系统原理或测量方法的方框图和测量流程图。
检测和校准结果不确定度可能来自:
(1)对被测量的定义不完善;
(2)实现被测量的定义的方法不理想;
(3)取样的代表性不够,即被测量的样本不能代表所定义的被测量;
(4)对测量过程受环境影响的认识不全,或对环境条件的测量与控制不完善;
(5)对模拟仪器的读数存在人为偏移;
(6)测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性,即导致仪器的不确定度;
(7)赋予计量标准的值或标准物质的值不准确;
(8)引用于数据计算的常量和其它参量不准确;
(9)测量方法和测量程序的近似性和假定性;
(10)在表面上看来完全相同的条件下,被测量重复观测值的变化。
分析时,除了定义的不确定度外,可从测量仪器、测量环境、测量人员、测量方法等方面全面考虑,特别要注意对测量结果影响较大的不确定度来源,应尽量做到不遗漏、不重复。
测量不确定度评定(分量)
在日常开展同一类被测件的常规检定、校准或检测工作中,如果测量系统稳定,测得重复性无明显变化,则可用该测量系统以与测量被测件相同的测量程序、操作者、操作条件和地点,预先对典型的被测件的典型被测量值进行n次测量(一般n不小于10),由贝塞尔公式计算出单个测得值的实际标准偏差 s ( x k )
即测量重复性。在对某个被测件实际测量时可以只测量n′次(1≤n′<n),并以n′次独立测量的算术平均值作为被测量的估计值,则该被测量估计值由于重复性导致的A类标准不确定度按公式(1-9)计算:
用这种方法评定的标准不确定度的自由度仍为 v = n- 1 。 注意:当怀疑被测量重复性有变化时,应及时重新测量和计算实验标准偏差 s ( x k ) 。
B类评定的方法是根据有关的信息或经验,判断被测量的可能值区间[-a,+a],假设被测量值的概率分布,根据概率分布和要求的包含概率p估计因子k,则B类标准不确定度uB可由公式得到:
式中:a为被测量可能值区间的半宽度。当k为扩展不确定度的倍乘因子时称包含因子,其他情况下根据概率论获得的k称置信因子。
(1)权威机构发布的量值;
(2)有证标准物质的量值;
(3)校准证书;
(4)仪器的漂移;
(5)经检定的测量仪器的准确度等级;
(6)根据人员经验推断的极限值等。
(1)生产厂提供的测量仪器的最大允许误差为±△,或由手册查出所用的参考数据误差限为±△,或当测量仪器或实物量具给出准确度等级等,并经计量部门检定合格,则评定仪器的不确定度时,可能值区间的半宽度为:a =△
(2)校准证书提供的校准值,给出了其扩展不确定度为U,则区间的半宽度为:a =U
(3)由有关资料查得某参数的最小可能值为a-和最大值为a+,最佳估计值为该区间的中点,则区间半宽度可以用下式估计:a =(a+─a-)/2
(4)必要时,可根据经验推断某量值不会超出的范围,或用实验方法来估计可能的区间。
(1)已知扩展不确定度是合成标准不确定度的若干倍时,该倍数就是包含因子k值。
(2)假设被测量值服从正态分布时,根据要求的概率查表2得到k值。
表2 正态分布情况下概率p与k值间的关系
p |
0.50 |
0.68 |
0.90 |
0.95 |
0.9545 |
0.99 |
0.9973 |
k |
0.675 |
1 |
1.645 |
1.960 |
2 |
2.576 |
3 |
(3)假设为非正态分布时,根据要求的概率查表3得到k值。
表3 常用非正态分布时的k值及B类标准不确定度 u B ( x )
分布类别 |
p ( % ) |
k |
u B ( x ) |
三角 |
100 |
|
a / |
梯形( β =0.71 ) |
100 |
2 |
a /2 |
矩形(均匀) |
100 |
|
a / |
反正弦 |
100 |
|
a / |
两点 |
100 |
1 |
a |
(1)被测量受许多随机影响量的影响,当它们各自的影响都很小时,不论各影响量的概率分布是什么形式,被测量的随机变化服从正态分布。如证书或报告给出的不确定度是具有包含概率为 0.90、0.95、0.99 的扩展不确定度(即给出 U90、U95、U99),此时,除非另有说明,可按正态分布来评定B类标准不确定度。
(2)当利用有关信息或经验,估计出被测量可能值区间的上限和下限,其值在区间外的可能几乎为零时,若被测量值落在该区间内的任意值处的可能性相同,则可假设为均匀分布(或称矩形分布、等概率分布)。如数据修约、测量仪器最大允许误差或分辨力、参考数据的误差限、度盘或齿轮的回差、平衡指示器调零不准、测量仪器的滞后或摩擦效应导致的不确定度及对被测量的可能值落在区间内的情况缺乏了解等,一般假设为均匀分布。
(3)当利用有关信息或经验,若被测量值落在该区间中心的可能性最大,则假设为三角分布。如两相同均匀分布的合成、两个独立量之和值或差值服从三角分布。
(4)当利用有关信息或经验,若落在该区间中心的可能性最小,而落在该区间上限和下限的可能性最大,则可假设为反正弦分布(即U形分布)。如度盘偏心引起的测角不确定度、正弦振动引起的位移不确定度、无线电测量中失配引起的不确定度、随时间正弦或余弦变化的温度不确定度等。
(5)按级使用量块时,中心长度偏差的概率分布可假设为两点分布。
(6)安装或调整测量仪器的水平或垂直状态导致的不确定度常假设为投影分布。
(7)实际工作中,可依据同行共识确定概率分布。
若数字显示器的分辨力为δx,由分辨力导致的标准不确定度分量u(x)采用B类评定,则区间半宽度为a=δx /2,假设可能值在区间内为均匀分布,查表3得k = ,因此由分辨力导致的标准不确定度分量u(x)为:
根据经验,按所依据的信息来源的可信程度来判断 u ( x i )的相对标准不确定度 △ [ u ( x i )]/ u ( x i ) 。 按上式计算出的自由度列于表4。
表4 △ [ u ( x i )]/ u ( x i ) 与 v i 与vi的关系
△ [ u ( x i )]/ u ( x i ) |
v i |
△ [ u ( x i )]/ u ( x i ) |
v i |
0 |
∞ |
0.30 |
6 |
0.10 |
50 |
0.40 |
3 |
0.20 |
12 |
0.50 |
2 |
0.25 |
8 |
被测量Y的估计值 y=f ( x 1 ,x 2 ,…,x N )的标准不确定度是由相应输入量 x 1 ,x 2 ,…,x N 的标准不确定度合理合成求得的,其表示式的符号为 u c ( y )。合成标准不确定度 u c ( y )表征合理赋予被测量之值Y的分散性,是一个估计标准偏差。
当简单直接测量,测量模型为 y = x 时,应该分析和评定测量时导致测量不确定度的各分量 u i , 若相互间不相关,则合成标准不确定度按公式(2-1)计算:
对大部分检测工作(除涉及航天、航空、兴奋剂检测等特殊领域中要求较高的场合外),只要无明显证据证明某个分量有强相关时,均可按不相关处理,如发现分量存在强相关,如采用相同仪器测量的量之间,则尽可能改用不同仪器分量测量这些量使其不相关。
如证实某些分量之间存在强相关,则首先判断相关性是正相关还是负相关,并分别取相关系数为+1或-1,然后将这些相关分量算术相加后得到一个“净”分量,再将它与其他独立无关分量用方和根求得 u c ( y )。
如发现各分量中有一个占支配地位时(该分量大于-其次那个分量三倍以上),合成不确定度就决定于该分量。
是被测量可能值包含区间的半宽度。 扩展不确定度分为U和UP两种。 一般情况下,在给出测量结果时报告扩展不确定度U。
(1)扩展不确定度U由合成标准不确定度 u c 乘包含因子k得到: U = ku c
当y和 u c ( y )所表征的概率分布近似为正态分布(不确定度分量较多且其大小也比较接近,可估计为正态分布)时,且 u c ( y )的有效自由度较大情况下,若k=2,则由U=2 u c 所确定的区间具有的包含概率约为95%。若k=3,则由U=3 u c 所确定的区间具有的包含概率约为99%。
在通常的测量中,一般取k=2。当取其他值时,应说明其来源。当给出扩展不确定度U时,一般应注明所取的k值;若未注明k值,k=2。
(2)当要求扩展不确定度所确定的区间具有接近于规定的包含概率p时,扩展不确定度用符号UP表示,当p为0.95,0.99时,分别表示为U95和U99。 U P = k p u c
kp是包含概率为p时的包含因子。 k p = t p ( v eff )
根据合成标准不确定度 u c ( y )的有效自由度veff和需要的包含概率,查《t分布在不同概率p与自由度v时的 t p ( v )值(t值)表》得到 t p ( v eff )值,该值即包含概率为p时的包含因子kp值。
如果合成不确定度中A类分量占比重较大,如 而且作A类评估时重复测量次数 n 较少,则包含因子 k 必须查 t 分布表获得。
扩展不确定度 U P = k p u c ( y )提供了一个具有包含概率为 p 的区间 y ± U P 。在给出 U P 时,应同时给出有效自由度 v eff 。
(3)如果可以确定 Y 可能值的分布不是正态分布,而是接近于其他某种分布,则不应按
k p = t p ( v eff ) 计算 U P 。
例如 Y 可能近似为矩形分布,取 p =0.95时 k p =1.65≈;取 p =0.99时 k p =1.71≈ ;取 p =1时 k p =1.73≈ 。
正态分布概率分布图
估计值y的数值和它的合成标准不确定度uc(y)或扩展不确定度U的数值均不应给出过多的有效位数。
通常最终报告的 u c ( y ) 和 U 最多为两位有效数字。对各标准不确定度分量 u ( x i ) ,为了在连续计算中避免修约误差导致不确定度,可以适当保留多余的位数。
在报告最终结果时,一般采用GB/T 8170-2008《数值修约规则与极限数值的表示和判定》修约到需要的有效数字。如 U =28.05kHz 经修约写成 28kHz 。 有时也可将不确定度最末位后面的数进位而不舍去。如 U =10.47kHz , 可以进位到 11kHz 。
完整的测量结果包含两个基本量,一时被测量Y的最佳估计值y,通常由数据测量列的算术平均值给出;另一个就是描述该测量结果分散性的量,即测量不确定度。
一般以合成标准不确定度 u c ( y ) 或扩展不确定度 U ( y ) 或它们的相对形式
给出 。
取包含因子 k =2 , 扩展不确定度为 U = ku c ( m s )=2×0.35mg=0.70mg,
测量结果不确定度报告有以下两种形式:
① m s =100.02147g , U =0.70mg ; k =2 。
② m s =(100.02147±0.00070)g ; k =2 。
① m s =100.02147g , U 95 =0.79mg ; v eff =9 。
② m s =(100.02147±0.00079)g ; v eff =9 , 括号内第二项为 U 95 之值。
③ m s =100.02147(79)g ; v eff =9 , 括号内为 U 95 之值,其末位与前面结果末位熟对齐。
④ m s =100.02147(0.00079)g ; v eff =9 , 括号内为 U 95 之值,与前面结果有相同的计量单位。
转自 : 实验室经理人
0人已收藏
0人已打赏
免费2人已点赞
分享
环境影响评价
返回版块2.32 万条内容 · 139 人订阅
阅读下一篇
2024年中,环保公司众生相:趋势与选择在过去的几年间,我们见证了很多环保公司把发展预期从“活得好”调整到“活着就好”。 以当下为出发点,有两个问题刚好是相反的方向。“为什么会这样?”是从当下往回看,想弄明白我们是如何走到今天这一步的,想得到一个解释。而“现在怎么办?”则是向前看,想要知道之后的路应该怎么走,寻求一个解决方案。
回帖成功
经验值 +10
全部回复(1 )
只看楼主 我来说两句 抢板凳资料不错,学习了,谢谢楼主分享
回复 举报