铁和锰的化学性质相近似,常常共存于地下水中。 通过氧化,将溶解状态的Mn 2+ 氧化为溶解度较低的Mn 4+ 从水中沉淀析出 ,即为地下水除锰的基本原理。 除锰比除铁困难 当水的pH>9.0时,水中溶解氧能够较快地将Mn 2+ 氧化成Mn 4+ ,而在中性pH条件下,Mn 2+ 几乎不能被溶解氧氧化。所以在 生产上一般不采用空气自然氧化法除锰
铁和锰的化学性质相近似,常常共存于地下水中。 通过氧化,将溶解状态的Mn 2+ 氧化为溶解度较低的Mn 4+ 从水中沉淀析出 ,即为地下水除锰的基本原理。 除锰比除铁困难
当水的pH>9.0时,水中溶解氧能够较快地将Mn 2+ 氧化成Mn 4+ ,而在中性pH条件下,Mn 2+ 几乎不能被溶解氧氧化。所以在 生产上一般不采用空气自然氧化法除锰 。目前 常用的除锰方法是催化氧化法和生物氧化法以及化学氧化剂氧化法 。
接触催化氧化法除锰工艺系统和接触催化氧化法除铁类似。即在中性pH条件下,含锰地下水经过天然锰砂滤料或石英砂滤料滤池过滤多日后, 滤料表面会形成 黑褐色锰质活性 滤膜,吸附水中的Mn 2+ ,在锰质活性滤膜 催化作用 下,氧化成Mn 4+ 后去除 ,称为 接触催化氧化法除锰 。 表面形成催化作用
工艺选择:
9.6.3: Fe 2+ ≤5mg/L,Mn 2+ <0.5mg/L
原水→曝气溶氧→单级过滤→出水
9.6.4: Fe 2+ >5mg/L,Mn 2+ >0.5mg/L
单级:原水→曝气溶氧→单级过滤(加厚)→出水
两级:原水→曝气→除Fe 2+ 滤池→除Mn 2+ 滤池→出水
9.6.5: 铁锰水中氨氮>1mg/L:两级曝气两级过滤
原水→曝气→除Fe 2+ 滤池→曝气→除Mn 2+ 滤池→出水
(除铁除锰滤池→大阻力配水)
9.6.6: 曝气装置应根据原水水质和工艺对溶氧要求确定。
近来有人认为催化剂不是MnO 2 ,而是α型Mn 3 O 4 (可以写成MnO x ,x=1.33)。并发现它并非是一种单质,而可能是黑锰矿(x=1.33~1.42)和水黑锰矿(x=1.15~1.45)的混合物。
以Mn 2+ 的催化氧化反应为:
Mn 2+ +MnO 2 →MnO 2 ·Mn 2+ (吸附)
MnO 2 ·Mn 2+ +O 2 +H 2 O→2MnO 2 +2H + (氧化)
水中二价锰在接触催化下的总反应式为:
2Mn 2+ +O 2 +2H 2 O→2MnO 2 +4H +
由于 二氧化锰沉淀物的表面催化作用 ,使得二价锰的氧化速度明显加快,这种反应生成物又起催化作用的氧化过程是一种自催化过程。根据式上式计算, 每氧化1mg/L的Mn 2+ ,理论上需氧量为32/(2x54.9)=0.29mg/L。实际需氧量约为理论值的2倍以上 。 中性条件下即可反应
催化氧化除锰工艺流程见下图:
催化氧化滤池滤料多采用含有二氧化锰的天然锰砂,有的含有四氧化三锰,形成锰质活性滤膜的时间(滤层成熟期)较短 。二价锰的氧化反应和 二氧化锰的凝聚过滤都在滤料层中完成 。 对于普通石英砂滤料,经过三四个月的运行时间,滤料颗粒表面上也会形成深褐色的二氧化锰覆盖膜,起到很好的催化作用,熟化后的砂滤料可以获得与锰砂相同的良好的除锰效果。在长期运行的除锰滤池中还会逐步滋生出大量的除锰菌落,具有生物催化氧化除锰的作用,明显提高除锰效果 。
铁、锰共存的地下水除铁除锰 时,由于 铁的氧化还原电位低于锰,而容易被O 2 氧化。在相同的pH条件下,二价铁比二价锰的氧化速率快。同时,Fe 2+ 又是Mn 4+ 的还原剂,阻碍二价锰的氧化,使得除锰比除铁困难。对于同时含有较低浓度铁锰的水,可以一步同时去除 。 如果铁锰含量较高且伴生氨氮(>1mg/L)时,需先除铁再除锰。下图是一种先除铁后除锰的两级曝气两级过滤工艺系统 。
当地下水中铁的含量不高(<2mg/L)且满足水的pH≥7.5时,两级曝气两级过滤除铁除锰工艺系统 可简化为一次曝气一次过滤的工艺,滤池上层除铁下层除锰在同一滤层中完成,不至于因锰的泄漏而影响水质 。
如果 铁含量高于5mg/L以上同时含有锰时,则除铁滤层的厚度增大后,剩余的滤层已无足够能力截留水中的锰,会使二价锰泄漏。为了更好地除铁除锰,可在一个流程中造两座滤池,采用二级过滤,第一级过滤除铁,第二级过滤除锰 。图10-5所示的压力滤池为 双层滤料滤池 ,经预氧化的含铁含锰地下水,自上而下进入双层滤料滤池, 上层除铁、下层除锰 。
在自然曝气除铁除锰滤池中,因生存条件适宜,不可避免会滋生一些微生物,其中就有一些能够氧化二价铁、锰的铁细菌,具有加速水中溶解氧氧化二价铁、锰的作用。在自然氧化除铁过程中,铁细菌的作用不甚明显。而在中性pH条件下自然氧化除锰困难时,生物作用能够发挥较好的除锰效果,可以认为是生物酶催化作用下生成的锰质活性滤膜作用,也有人认为是生物法除锰。
生物法除铁除锰也是在滤池中进行的 ,称为生物除铁除锰滤池。曝气后的含铁含锰水进入滤池过滤,铁细菌氧化水中Fe 2+ 、Mn 2+ 并进行繁殖。经数十日,便有良好的除铁除锰效果,即认为滤层中以锰氧化细菌为主的微生物群落繁殖代谢达到平衡,生物除锰滤层已经成熟。如果用成熟滤池中的铁泥对新的滤料层微生物接种、培养、驯化,则可以加快滤层成熟速度,该方法又称为生物固锰除锰技术。 一般认为,生物除锰原理是:Mn 2+ 首先吸附于细菌表面,然后在铁、锰氧化细菌胞内酶促反应以及铁、锰氧化细菌分泌物的催化反应下,使Fe 2+ 氧化成Fe 3+ ,Mn 2+ 氧化成Mn 4+ 。
锰的氧化还原菌对Mn 2+ 的去除是在细胞酶参与下的吸附氧化过程。细菌细胞酶上具有发达的Mn 2+ 胞内磷脂蛋白运输系统,对Mn 2+ 的利用既是生理性解毒,又是能量储备方式。
生物除铁除锰工艺简单,可在同一滤池内完成。当原水中二价铁小于5mg/L,二价锰小于0.5mg/L时,工艺流程如图10-6所示。
生物除铁除锰需氧量较少,只需简单曝气即可(如跌水曝气) 不需要散除CO 2 ,能力强于催化氧化除锰 ,曝气装置简单。滤池中滤料仅起微生物载体作用,可以是石英砂、无烟煤和锰砂等 。目前,生物除铁除锰法我国已有生产应用,在pH=6.9条件下,允许含锰量2~3mg/L,含铁量高达8mg/L。该工艺的原理、适用铁锰比例以及pH范围,尚需不断研究和积累经验。
有关除铁、除锰滤池的冲洗强度、膨胀率和冲洗时间可参考表10-1选用
除铁、除锰滤池冲洗强度、膨胀率、冲洗时间参考值
注:表中所列锰砂滤料冲洗强度按滤料密度(g/cm 3 )在3.4~3.6计算,冲洗水温为8℃的数据。
和化学氧化除铁相似,氯、二氧化氯、臭氧、高锰酸钾强氧化剂能把二价锰氧化成四价锰沉淀析出,具有除锰作用,容易发生化学反应的反应式为:
HOCl+Mn 2+ +H 2 O→MnO 2 +HCl+2H +
理论上,每氧化1mg/L的Mn 2+ 需要2x35.5/54.9=1.29mg/L的氯。
2CIO 2 +5Mn 2+ +6H 2 O→5MnO 2 +2HCl+10H +
O 3 +Mn 2+ +H 2 O→MnO 2 + O 2 +2H +
其中,二氧化氯、臭氧生产工序复杂。 用氯氧化水中二价锰需要在pH≥9.5时才有足够快的氧化速度 ,在工程上不便应用。 如果通过滤料表面的MnO 2 ·H 2 O膜催化作用,氯在pH=8.5的条件下可将二价锰氧化为四价锰 ,是工程上能够接受的除锰方法。
高锰酸钾是比氯更强的氧化剂,可以在中性或微酸性条件下将水中的二价锰迅速氧化成四价锰:
3Mn 2+ +2KMnO 4 +2H 2 O→5MnO 2 ↓+2K + +4H +
理论上,每氧化1mg/L的Mn 2+ 需要2x158.04/(3x54.9)=1.92mg/L的高锰酸钾。