安培, Andr é Marie Amp è re(1775 ? 1836),电磁学奠基人,法国科学院院士。生于法国里昂。 12 岁时,在几周内即掌握了拉丁文,从而得以涉猎当时的许多数学名著。当他获悉奥斯特发现载流导线对磁针的偏转效应后,立即设想了电流与磁有关的理论,并在一周内发表该理论的第一篇论文,随之发表了著名的“安培环路定律”。安培是认识到电压与电流区别的第一人,研制了用以检测电流、电压的工具??检流计。被认为是最伟大的电科学家之一。 1881 年 IEC (国际电工委员会)巴黎首次会议上确定以安培为电流单位。
安培, Andr é Marie Amp è re(1775 ? 1836),电磁学奠基人,法国科学院院士。生于法国里昂。 12 岁时,在几周内即掌握了拉丁文,从而得以涉猎当时的许多数学名著。当他获悉奥斯特发现载流导线对磁针的偏转效应后,立即设想了电流与磁有关的理论,并在一周内发表该理论的第一篇论文,随之发表了著名的“安培环路定律”。安培是认识到电压与电流区别的第一人,研制了用以检测电流、电压的工具??检流计。被认为是最伟大的电科学家之一。 1881 年 IEC (国际电工委员会)巴黎首次会议上确定以安培为电流单位。
安培 (1775-1836)
安培(André Marie Ampè 1775~1836年),法国物理学家,对数学和化学也有贡献。1775年1月22日生于里昂一个富商家庭。年少时就显出数学才能。他的父亲信奉J.J.卢梭的教育思想,供给他大量图书,令其走自学的道路,于是他博览群书,吸取营养;卢梭关于植物学的著作燃起了他对科学的热情。
科学成就
1.安培最主要的成就是1820~1827年对电磁作用的研究。
①发现了安培定则
奥斯特发现电流磁效应的实验,引起了安培注意,使他长期信奉库仑关于电、磁没有关系的信条受到极大震动,他全部精力集中研究,两周后就提出了磁针转动方向和电流方向的关系及从右手定则的报告,以后这个定则被命名为安培定则。
②发现电流的相互作用规律
接着他又提出了电流方向相同的两条平行载流导线互相吸引,电流方向相反的两条平行载流导线互相排斥。对两个线圈之间的吸引和排斥也作了讨论。
③发明了电流计
安培还发现,电流在线圈中流动的时候表现出来的磁性和磁铁相似,创制出第一个螺线管,在这个基础上发明了探测和量度电流的电流计。
④提出分子电流假说
他根据磁是由运动的电荷产生的这一观点来说明地磁的成因和物质的磁性。提出了著名的分子电流假说。安培认为构成磁体的分子内部存在一种环形电流??分子电流。由于分子电流的存在,每个磁分子成为小磁体,两侧相当于两个磁极。通常情况下磁体分子的分子电流取向是杂乱无章的,它们产生的磁场互相抵消,对外不显磁性。当外界磁场作用后,分子电流的取向大致相同,分子间相邻的电流作用抵消,而表面部分未抵消,它们的效果显示出宏观磁性。安培的分子电流假说在当时物质结构的知识甚少的情况下无法证实,它带有相当大的臆测成分;在今天已经了解到物质由分子组成,而分子由原子组成,原子中有绕核运动的电子,安培的分子电流假说有了实在的内容,已成为认识物质磁性的重要依据。
⑤总结了电流元之间的作用规律??安培定律
安培做了关于电流相互作用的四个精巧的实验,并运用高度的数学技巧总结出电流元之间作用力的定律,描述两电流元之间的相互作用同两电流元的大小、间距以及相对取向之间的关系。后来人们把这定律称为安培定律。安培第一个把研究动电的理论称为“电动力学”,1827年安培将他的电磁现象的研究综合在《电动力学现象的数学理论》一书中。这是电磁学史上一部重要的经典论著。为了纪念他在电磁学上的杰出贡献,电流的单位“安培”以他的姓氏命名。
他在数学和化学方面也有不少贡献。他曾研究过概率论和积分偏微方程;他几乎与H戴维同时认识元素氯和碘,导出过阿伏伽德罗定律,论证过恒温下体积和压强之间的关系,还试图寻找各种元素的分类和排列顺序关系。
3.“电学中的牛顿”
安培将他的研究综合在《电动力学现象的数学理论》一书中,成为电磁学史上一部重要的经典论著。麦克斯韦称赞安培的工作是“科学上最光辉的成就之一,还把安培誉为“电学中的牛顿”。
安培还是发展测电技术的第一人,他用自动转动的磁针制成测量电流的仪器,以后经过改进称电流计。
安培在他的一生中,只有很短的时期从事物理工作,可是他却能以独特的、透彻的分析,论述带电导线的磁效应,因此我们称他是电动力学的先创者,他是当之无愧的。
12楼
爱迪生 (1847-1931)
托马斯·阿尔瓦·爱迪生(ThomasAlvaEdison )是位举世闻名的美国电学家和发明家,他除了在留声机、电灯、电话、电报、电影等方面的发明和贡献以外,在矿业、建筑业、化工等领域也有不少著名的创造和真知灼见。爱迪生一生共有约两千项创造发明,为人类的文明和进步作出了巨大的贡献。
爱迪生于1847年 2月11日诞生于美国中西部的俄亥俄州的米兰小市镇。父亲是荷兰人的后裔,母亲曾当过小学教师,是苏格兰人的后裔。爱迪生7岁时,父亲经营屋瓦生意亏本,将全家搬到密歇根州休伦北郊的格拉蒂奥特堡定居下来。搬到这里不久,爱迪生就患了猩红热,病了很长时间,人们认为这种疾病是造成他耳聋的原因。爱迪生8岁上学,但仅仅读了三个月的书,就被老师斥为“低能儿”而撵出校门。从此以后,他的母亲是他的“家庭教师”。由于母亲的良好的教育方法,使得他对读书发生了浓厚的兴趣。“他不仅博览群书,而且一目十行,过目成诵”。8 岁时,他读了英国文艺复兴时期最重要的剧作家莎士比亚、狄更斯的著作和许多重要的历史书籍,到9 岁时,他能迅速读懂难度较大的书,如帕克的《自然与实验哲学》。10岁时酷爱化学。11岁那年,他实验了他的第一份电报。为了赚钱购买化学药品和设备,他开始了工作。12岁的时候,他获得列车上售报的工作,辗转于休伦港和密歇根州的底特律之间。他一边卖报,一边兼做水果、蔬菜生意,只要有空他就到图书馆看书。他买了一架旧印刷机,开始出版自己的周刊——《先驱报》,第一期周刊就是在列车上印刷的。他用所挣得的钱在行李车上建立了一个化学实验室。不幸有一次化学药品着火,他连同他的设备全被扔出车外。另外有一次,当爱迪生正力图登上一列货运列车时,一个列车员抓住他的两只耳朵助他上车。这一行动导致了爱迪生成为终身聋子。
1862年8月,爱迪生以大无畏的英雄气魄救出了一个在火车轨道上即将遇难的男孩。孩子的父亲对此感恩戴德,但由于无钱可以酬报,愿意教他电报技术。从此,爱迪生便和这个神秘的电的新世界发生了关系,踏上了科学的征途。
1863年,爱迪生担任大干线铁路斯特拉福特枢纽站电信报务员。从1864年至1867年,在中西部各地担任报务员,过着类似流浪的生活。足迹所至,包括斯特拉福特、艾德里安、韦恩堡、印第安那波利斯、辛辛那提、那什维尔、田纳西、孟斐斯、路易斯维尔、休伦等地。
1868年,爱迪生以报务员的身份来到了波士顿。同年,他获得了第一项发明专利权。这是一台自动记录投票数的装置。爱迪生认为这台装置会加快国会的工作,它会受到欢迎的。然而,一位国会议员告诉他说,他们无意加快议程,有的时候慢慢地投票是出于政治上的需要。从此以后,爱迪生决定,再也不搞人们不需要的任何发明。
1869年6月初,他来到纽约寻找工作。当他在一家经纪人办公室等候召见时,一台电报机坏了。爱迪生是那里唯一的一个能修好电报机的人,于是他谋得了一个比他预期的更好的工作。10月他与波普一起成立一个“波普——爱迪生公司”,专门经营电气工程的科学仪器。在这里,他发明了“爱迪生普用印刷机”。他把这台印刷机献给华尔街一家大公司的经理,本想索价5000美元,但又缺乏勇气说出口来。于是他让经理给个价钱,而经理给了4万美元。
爱迪生用这笔钱在新泽西州纽瓦克市的沃德街建了一座工厂,专门制造各种电气机械。他通宵达旦地工作。他培养出许多能干的助手,同时,也巧遇了勤快的玛丽,他未来的第一个新娘。在纽瓦克,他做出了诸如蜡纸、油印机等的发明,从1872至1875年,爱迪生先后发明了二重、四重电报机,还协助别人搞成了世界上第一架英文打字机。
1876年春天,爱迪生又一次迁居,这次他迁到了新泽西州的“门罗公园”。他在这里建造了第一所“发明工厂”,它“标志着集体研究的开端”。1877年,爱迪生改进了早期由贝尔发明的电话,并使之投入了实际使用。他还发明了他心爱的一个项目——留声机。电话和电报“是扩展人类感官功能的一次革命”;留声机是改变人们生活的三大发明之一,“从发明的想象力来看,这是他极为重大的发明成就”。到这个时候,人们都称他为“门罗公园的魔术师”。
爱迪生在发明留声机的同时,经历无数次失败后终于对电灯的研究取得了突破,1879年10月22日,爱迪生点燃了第一盏真正有广泛实用价值的电灯。为了延长灯丝的寿命,他又重新试验,大约试用了6000多种纤维材料,才找到了新的发光体——日本竹丝,可持续1000多小时,达到了耐用的目的。从某一方面来说,这一发明是爱迪生一生中达到的登峰造极的成就。接着,他又创造一种供电系统,使远处的灯具能从中心发电站配电,这是一项重大的工艺成就。
他在纯科学上第一个发现出现于1883年。试验电灯时,他观察到他称之为爱迪生效应的现象:在点亮的灯泡内有电荷从热灯丝经过空间到达冷板。爱迪生在1884年申请了这项发现的专利,但并未进一步研究。而旁的科学家利用爱迪生效应发展了电子工业,尤其是无线电和电视。
爱迪生又企图为眼睛做出留声机为耳朵做出的事,电影摄影机即产生于此。使用一条乔治伊斯曼新发明的赛璐珞胶片,他拍下一系列照片,将它们迅速地、连续地放映到幕布上,产生出运动的幻觉。他第一次在实验室里试验电影是在1889年,1891年申请了专利。1903年,他的公司摄制了第一部故事片“列车抢劫”。爱迪生为电影业的组建和标准化做了大量工作。
1887年爱迪生把他的实验室迁往西奥兰治以后,为了他的多种发明制成产品和推销,他创办了许多商业性公司;这些公司后来合并为爱迪生通用电气公司,后又称为通用电气公司。此后,他的兴趣又转到荧光学、矿石捣碎机、铁的磁离法、蓄电池和铁路信号装置上。
第一次世界大战期间,他研制出鱼雷机械装置、喷火器和水底潜望镜。
1929年10月21日,在电灯发明50周年的时候,人们为爱迪生举行了盛大的庆祝会,德国的爱因斯坦和法国的居里夫人等著名科学家纷纷向他祝贺。不幸的是,就在这次庆祝大会上,当爱迪生致答辞的时候,由于过分激动,他突然昏厥过去。从此,他的身体每况愈下。1931年10月18日,这位为人类作过伟大贡献的科学家因病逝世,终年84岁。
爱迪生的文化程度极低,对人类的贡献却这么巨大,这里的“秘诀”是什么呢?他除了有一颗好奇的心,一种亲自试验的本能,就是他具有超乎常人的艰苦工作的无穷精力和果敢精神。当有人称爱迪生是个“天才”时,他却解释说:“天才就是百分之二的灵感加上百分之九十八的汗水。”他在“发明工厂”,把许多不同专业的人组织起来,里面有科学家、工程师、技术人员、工人共100多人,爱迪生的许多重大发明就是靠这个集体的力量才获得成功的。他的成就主要归功于他的勤奋和创造性才能以及集体的力量,此外,他的妻子也曾起了相当重要的作用。
回复
13楼
爱迪生发明创造年表:
1868年10月11日发明“投票计数器”,获得生平第一项专利权。
1869年10月与友人合设“波普——爱迪生公司”。
1870年发明普用印刷机,出让专利权,获4万美元。在纽约克自设制造厂。
1872—1876年发明电动画机电报,自动复记电报法,二重、四重电报法,制造蜡纸炭质电阻器等。
1875年发明声波分析谐振器。
1876年在新泽西州的门罗公园建立了一个实验室——第一个工业研究实验室。它是现代的“研究小组”这一概念的创始。发明碳精棒送话器。申请电报自动记录机专利。
1877年在门罗公园改进了早期由贝尔发明的电话,并使之投入了实际使用。获得三项专利:穿孔笔、气动铁笔和普通铁笔。 8月20日发明了被证实为爱迪生心爱的一个项目——留声机。
1878年爱迪生宣称要解决电照明的问题。英国皇家学会举办留声机展览。改良留声机,设计微音器,扩音器,空中扬声器,声音发动机,调音发动机,微热计,验味计等。2月19日获留声机专利。7月与宾夕法尼亚大学派克教授赴怀俄明观察日全蚀,并用他发明的气温计测量太阳周围全体的温度。8月返回门罗公园,重新投入科研实验当中。英国批准爱迪生“录放机”专利申请。9月访问康涅狄克州的威廉·华莱士。开始进行发明电灯的研究。10月5日提出等一份关于铂丝“电灯”的专利申请。
1879—1880年经数千次的挫折发明高阻力白炽灯。改良发电机。设计电流新分布法,电路的调准和计算法。发明电灯座和开关。发明磁力析矿法。
1879年8月30日爱迪生和贝尔在萨拉托加溪市的市政厅各自演示了电话装置,结果爱迪生的电话比贝尔的清晰。10月21日发明高阻力白炽灯,它连续点燃了40个小时。11月1日申请碳丝灯专利。12月21日《纽约快报》报道了爱迪生的白炽电灯。12月25日对来自纽约市的3000名参观者在门罗公园作公开电灯表演。
1880年研究直升机。获得电灯发明专利权。制成磁力筛矿器。1月28日提出“电力输配系统”专利书。2月18日《斯克立柏月刊》发表了《爱迪生的电灯》一文,正式发表了电灯的发明。5月第一艘由电灯照明的“哥伦比亚号”轮船试航成功。
12月成立纽约爱迪生电力照明公司。
1881纽约第五大街总部设立。成立一个白炽灯厂于纽约克。设立发电机,地下电线,电灯零件的制造厂。在门罗公园试验电车。
1882发明电流三线分布制。申请专利141项。9月4日成立第一所中央厂。 12月底美国各地建立了150多个小电站。
1885年5月23日提出无线电报专利。
1887—1890年改良圆筒式留声机,取得关于留声机的专利权80余份。经营留声机,唱片,授语机等制造和发售事业。
1888年发明唱筒型留声机。
1889年参加巴黎百年博览会。发明电气铁道多种。完成活动电影机。
1890—1899年设计大型碎石机,研磨机。在奥格登矿地亲自指挥用新方法大规模开发铁矿。
1891年发明“爱迪生选矿机”,开始自行经营采矿事业。获得“活动电影放映机”专利。5月20日第一台成功的活动电影视镜在新泽西州西奥兰治的爱迪生实验室向公众展示。
1893年爱迪生实验室的庭院里建立起世界上第一座电影“摄影棚”。
1894年4月14日在纽约开辟第一家活动电影放映机影院。
1896年年4月23日第一次在纽约的科斯特—拜厄尔的音乐堂使用“维太放映机”放映影片,受到公众热烈欢迎。
1902年使用新型蓄电池作车辆动力的试验,行程为5000英里,每充一次电,可走100英里,获得成功。
1903年爱迪生的公司摄制了第一部故事片《列车抢劫》。
1909年费时十年,蓄电池的研究,终于成功。制成传真电报。获得原料机、加细碾机、长窑设计专利。
1910—1914年完成圆盘式留声机,不损唱片和金钢石唱片。完成有声电影机。
1910年发明“圆盘唱片”。
1912年发明“有声电影”。研制成传语留声机。
1914—1915年发明石碳酸综合制造法,并合留声机和授语机为远写机,一方电话机可自动纪录对方说话。自行制造苯、靛油等。
1915—1918年完成发明39件之多,其中最著名的是鱼雷机械装置,喷火器和水底潜望镜等。
1927年完成长时间唱片。
1928年从野草中提炼橡胶成功。
回复
14楼
库仑 (1736-1806)
电学是物理学的一个重要分枝,在它的发展过程中,很多物理学巨匠都曾作出过杰出的贡献。法国物理学家查利·奥古斯丁·库仑就是其中影响力非常巨大的一员。
库仑在1736年6月14日生于法国昂古莱姆。库仑家里很有钱,在青少年时期,他就受到了良好的教育。他后来到巴黎军事工程学院学习,离开学校后,他进入西印度马提尼克皇家工程公司工作。工作了八年以后,他又在埃克斯岛瑟堡等地服役。这时库仑就已开始从事科学研究工作,他把主要精力放在研究工程力学和静力学问题上。
他在军队里从事了多年的军事建筑工作,为他1773年发表的有关材料强度的论文积累了材料。在这篇论文里,库仑提出了计算物体上应力和应变的分布的方法,这种方法成了结构工程的理论基础,一直沿用到现在。
1777年法国科学院悬赏,征求改良航海指南针中的磁针的方法。库仑认为磁针支架在轴上,必然会带来磨擦,要改良磁针,必须从这根本问题着手。他提出用细头发丝或丝线悬挂磁针。同时他对磁力进行深入细致的研究,特别注意了温度对磁体性质的影响。他又发现线扭转时的扭力和针转过的角度成比例关系,从而可利用这种装置算出静电力或磁力的大小。这导致他发明了扭秤,扭秤能以极高的精度测出非常小的力。由于成功地设计了新的指南针结构以及在研究普通机械理论方面作出的贡献,1782年,他当选为法国科学院院士。为了保持较好的科学实验条件,他仍在军队中服务,但他的名字在科学界已为人所共知。
库仑在1785年到1789年之间,通过精密的实验对电荷间的作用力作了一系列的研究,连续在皇家科学院备忘录中发表了很多相关的文章。
1785年,库仑用自己发明的扭秤建立了静电学中著名的库仑定律。同年,他在给法国科学院的《电力定律》的论文中详细地介绍了他的实验装置,测试经过和实验结果。
库仑的扭秤是由一根悬挂在细长线上的轻棒和在轻棒两端附着的两只平衡球构成的。当球上没有力作用时,棒取一定的平衡位置。如果两球中有一个带电,同时把另一个带同种电荷的小球放在它附近,则会有电力作用在这个球上,球可以移动,使棒绕着悬挂点转动,直到悬线的扭力与电的作用力达到平衡时为止。因为悬线很细,很小的力作用在球上就能使棒显著地偏离其原来位置,转动的角度与力的大小成正比。库仑让这个可移动球和固定的球带上不同量的电荷,并改变它们之间的距离:
第一次,两球相距36个刻度,测得银线的旋转角度为36度。
第二次,两球相距18个刻度,测得银线的旋转角度为144度。
第三次,两球相距8.5个刻度,测得银线的旋转角度为575.5度。
上述实验表明,两个电荷之间的距离为4:2:1时,扭转角为1:4:16。由于扭转角的大小与扭力成反比,所以得到:两电荷间的斥力的大小与距离的平方成反比。库仑认为第三次的偏差是由漏电所致。
经过了这们巧妙的安排,仔细实验,反复的测量,并对实验结果进行分析,找出误差产生的原因,进行修正,库仑终于测定了带等量同种电荷的小球之间的斥力。
但是对于异种电荷之间的引力,用扭称来测量就遇到了麻烦。因为金属丝的扭转的回复力矩仅与角度的一次方成比例,这就不能保证扭称的稳定。经过反复的思考,库仑发明了电摆。他利用与单摆相类似的方法测定了异种电荷之间的引力也与它们的距离的平方成反比。
最后库仑终于找出了在真空中两个点电荷之间的相互作用力与两点电荷所带的电量及它们之间的距离的定量关系,这就是静电学中的库仑定律,即两电荷间的力与两电荷的乘积成正比,与两者的距离平方成反比。库仑定律是电学发展史上的第一个定量规律,它使电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。电荷的单位库仑就是以他的姓氏命名的。
磁学中的库仑定律也是利用类似的方法得到的。1789年法国大革命爆发,库伦隐居在自己的领地里,每天全身心地投入到科学研究的工作中去。同年,他的一部重要著作问世,在这部书里,他对有两种形式的电的认识发展到磁学理论方面,并归纳出类似于两个点电荷相互作用的两个磁极相互作用定律。库仑以自己一系列的著作丰富了电学与磁学研究的计量方法,将牛顿的力学原理扩展到电学与磁学中。库仑的研究为电磁学的发展、电磁场理论的建立开拓了道路。这是他的扭秤在精密测量仪器及物理学的其它方面也得到了广泛的应用。
库仑不仅在力学和电学上都做出了重大的贡献,做为一名工程师,他在工程方面也作出过重要的贡献。他曾设计了一种水下作业法。这种作业法类似于现代的沉箱,它是应用在桥梁等水下建筑施工中的一种很重要的方法。
他还给我们留下了不少宝贵的著作,其中最主要的有《电气与磁性》一书,共七卷,于1785年至1789年先后公开出版发行。
1806年8月23日,库仑因病在巴黎逝世,终年七十岁。
库仑是十八世纪最伟大的物理学家之一,他的杰出贡献是永远也不会磨灭的。
回复
15楼
焦耳 (1818-1889)
十八世纪,人们对热的本质的研究走上了一条弯路,“热质说”在物理学史上统治了一百多年。虽然曾有一些科学家对这种错误理论产生过怀疑,但人们一直没有办法解决热和功的关系的问题,是英国自学成才的物理学家詹姆斯·普雷斯科特·焦耳为最终解决这一问题指出了道路。
焦耳1818年12月24日生于英国曼彻斯特,他的父亲是一个酿酒厂主。焦耳自幼跟随父亲参加酿酒劳动,没有受过正规的教育。青年时期,在别人的介绍下,焦耳认识了著名的化学家道尔顿。道尔顿给予了焦耳热情的教导。焦耳向他虚心学习了数学、哲学和化学,这些知识为焦耳后来的研究奠定了理论基础。而且道尔顿教诲了焦耳理论与实践相结合的科研方法,激发了焦耳对化学和物理的兴趣。
焦耳最初的研究方向是电磁机,他想将父亲的酿酒厂中应用的蒸汽机替换成电磁机以提高工作效率。1837年,焦耳装成了用电池驱动的电磁机,但由于支持电磁机工作的电流来自锌电池,而锌的价格昂贵,用电磁机反而不如用蒸汽机合算。焦耳的最初目的虽然没有达到,但他从实验中发现电流可以做功,这激发了他进行深入研究的兴趣。
1840年,焦耳把环形线圈放入装水的试管内,测量不同电流强度和电阻时的水温。通过这一实验,他发现:导体在一定时间内放出的热量与导体的电阻及电流强度的平方之积成正比。四年之后,俄国物理学家楞次公布了他的大量实验结果,从而进一步验证了焦耳关于电流热效应之结论的正确性。因此,该定律称为焦耳—楞次定律。
焦耳总结出焦耳—楞次定律以后,进一步设想电池电流产生的热与电磁机的感生电流产生的热在本质上应该是一致的。1843年,焦耳设计了一个新实验。将一个小线圈绕在铁芯上,用电流计测量感生电流,把线圈放在装水的容器中,测量水温以计算热量。这个电路是完全封闭的,没有外界电源供电,水温的升高只是机械能转化为电能、电能又转化为热的结果,整个过程不存在热质的转移。这一实验结果完全否定了热质说。
上述实验也使焦耳想到了机械功与热的联系,经过反复的实验、测量,焦耳终于测出了热功当量,但结果并不精确。1843年8月21日在英国学术会上,焦耳报告了他的论文《论电磁的热效应和热的机械值》,他在报告中说1千卡的热量相当于460千克米的功。他的报告没有得到支持和强烈的反响,这时他意识到自己还需要进行更精确的实验。
1844年,焦耳研究了空气在膨胀和压缩时的温度变化,他在这方面取得了许多成就。通过对气体分子运动速度与温度的关系的研究,焦耳计算出了气体分子的热运动速度值,从理论上奠定了波义耳—马略特和盖—吕萨克定律的基础,并解释了气体对器壁压力的实质。焦耳在研究过程中的许多实验是和著名物理学家威廉·汤姆生(后来受封为开尔文勋爵)共同完成的。在焦耳发表的九十七篇科学论文中有二十篇是他们的合作成果。当自由扩散气体从高压容器进入低压容器时,大多数气体和空气的温度都要下降,这一现象就是两人共同发现的。这一现象后来被称为焦耳—汤姆生效应。
无论是在实验方面,还是在理论上,焦耳都是从分子动力学的立场出发进行深入研究的先驱者之一。
在从事这些研究的同时,焦耳并没有间断对热功当量的测量。1847年,焦耳做了迄今认为是设计思想最巧妙的实验:他在量热器里装了水,中间安上带有叶片的转轴,然后让下降重物带动叶片旋转,由于叶片和水的磨擦,水和量热器都变热了。根据重物下落的高度,可以算出转化的机械功;根据量热器内水的升高的温度,就可以计算水的内能的升高值。把两数进行比较就可以求出热功当量的准确值来。
焦耳还用鲸鱼油代替水来作实验,测得了热功当量的平均值为423.9千克米/千卡。接着又用水银来代替水,不断改进实验方法,直到1878年,这时距他开始进行这一工作将近四十年了,他已前后用各种方法进行了四百多次的实验。他在1849年用磨擦使水变热的方法所得的结果跟1878年的是相同的,即为423.9千克重米/千卡。一个重要的物理常数的测定,能保持三十年而不作较大的更正,这在物理学史上也是极为罕见的事。这个值当时被大家公认为热功当量J的值,它比现在J的公认值 ——427千克米/千卡约小0.7%。在当时的条件下,能做出这样精确的实验来,说明焦耳的实验技能是多么的高超啊!
然而,当焦耳在1847年的英国科学学会的会议上再次公布自己的研究成果时,他还是没有得到支持,很多科学家都怀疑他的结论,认为各种形式的能之间的转化是不可能的。直到1850年,其他一些科学家用不同的方法获得了能量守恒定律和能量转化定律,他们的结论和焦耳相同,这时焦耳的工作才得到承认。
1850年,焦耳凭借他在物理学上作出的重要贡献成为英国皇家学会会员。当时他三十二岁。两年后他接受了皇家勋章。许多外国科学院也给予他很高的荣誉。虽然焦耳不断进行着他的实验测量工作,遗憾的是,他的科学创造性,特别是在物理概念方面的创造性,过早地就减少了。1875年,英国科学协会委托他更精确地测量热功当量。他得到的结果是4.15,非常接近目前采用的值1卡=4.184焦耳。1875年,焦耳的经济状况大不如前。这位曾经富有过但却没有一定职位的人发现自己在经济上处于困境,幸而他的朋友帮他弄到一笔每年200英镑的养老金,使他得以维持中等但舒适的生活。五十五岁时,他的健康状况恶化,研究工作减慢了。1878年当他六十岁时,焦耳发表了他的最后一篇论文。1878年,焦耳退休。
焦耳活到了七十一岁。1889年10月11日,焦耳在索福特逝世。后人为了纪念焦耳,把功和能的单位定为焦耳。
在去世前两年,焦耳对他的弟弟的说,“我一生只做了两三件事,没有什么值得炫耀的。”相信对于大多数物理学家,他们只要能够做到这些小事中的一件也就会很满意了。焦耳的谦虚是非常真诚的。很可能,如果他知道了在威斯敏斯特教堂为他建造了纪念碑,并以他的名字命名能量单位,他将会感到惊奇的,虽然后人决不会感到惊奇。
回复
16楼
麦克斯韦 (1831-1879)
麦克斯韦是继法拉第之后,集电磁学大成的伟大科学家。他依据库仑、高斯、欧姆、安培、毕奥、萨伐尔、法拉第等前人的一系列发现和实验成果,建立了第一个完整的电磁理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的本质的统一性,完成了物理学的又一次大综合。这一理论自然科学的成果,奠定了现代的电力工业、电子工业和无线电工业的基础。
麦克斯韦1831年6月出生于英国爱丁堡,他的父亲原是律师,但他的主要兴趣是在制作各种机械和研究科学问题,他这种对科学的强烈爱好,对麦克斯韦一生有深刻的影响。麦克斯韦10岁进入爱丁堡中学, 14岁在中学时期就发表了第一篇科学论文《论卵形曲线的机械画法》,反映了他在几何和代数方面的丰富知识。16岁进入爱丁堡大学学习物理,三年后,他转学到剑桥大学三一学院。在剑桥学习时,打下了扎实的数学基础,为他尔后把数学分析和实验研究紧密结合创造了条件。他阅读了W.汤姆生的科学著作,他十分赞同法拉第提出的新观点,并且精心研究法拉第的《电学的实验研究》一书。他以法拉第的力线概念为指导,透过这些似乎杂乱无章的实验记录,看出了它们之间实际上贯穿着一些简单的规律。于是,他发表了第一篇电磁学论文《论法拉第的力线》。在这篇论文中,法拉第的力线概念获得了精确的数学表述,并且由此导出了库仑定律和高斯定律。这篇文章还只是限于把法拉第的思想翻译成数学语言,还没有引导到新的结果。1862年他发表了第二篇论文《论物理力线》,不但进一步发展了法拉第的思想,扩充到磁场变化产生电场,而且得到了新的结果:电场变化产生磁场,由此预言了电磁波的存在,并证明了这种波的速度等于光速,揭示了光的电磁本质。这篇文章包括了麦克斯韦研究电磁理论达到的主要结果。1864年他的第三篇论文《电磁场的动力学理论》,从几个基本实验事实出发,运用场论的观点,以演绎法建立了系统的电磁理论。1873年出版的《电学和磁学论》一书是集电磁学大成的划时代著作,全面地总结了19世纪中叶以前对电磁现象的研究成果,建立了完整的电磁理论体系。这是一部可以同牛顿的《自然哲学的数学原理》、达尔文的《物种起源》和赖尔的《地质学原理》相媲美的里程碑式的著作。
麦克斯韦在总结前人工作的基础上,引入位移电流的概念,建立了一组微分方程。这方程组确定电荷、电流(运动的电荷)、电场、磁场之间的普遍联系,是电磁学的基本方程,麦克斯韦方程组表明,空间某处只要有变化的磁场就能激发出涡旋电场,而变化的电场又能激发涡旋磁场。交变的电场和磁场互相激发就形成了连续不断的电磁振荡即电磁波。麦克斯韦方程还说明,电磁波的速度只随介质的电和磁的性质而变化,由此式可证明电微波在以太(即真空)中传播的速度,等于光在真空中传播的速度。这不是偶然的巧合,而是由于光和电磁波在本质上是相同的。光是一定波长的电磁波,这就是麦克斯韦创立的光的电磁学说。
麦克斯韦被大多数近代物理学家看作是19世纪的科学家,但他对20世纪的物理学影响很大,他与牛顿和爱因斯坦齐名。1931年爱因斯坦在麦克斯韦生辰百年纪念会上曾指出:麦克斯韦的工作“是牛顿以来,物理学最深刻和最富有成果的工作”,从而使物理现实的概念得到了改变。麦克斯韦提出的电磁辐射的概念和他的场方程组,是根据法拉第的电力线和磁力线的实验观察提出来的,从而引出了爱因斯坦的狭义相对论,并建立了质量和能量的等效性原理。使麦克斯韦成为历史上最伟大的科学家之一的工作是他关于电磁学的研究,麦克斯韦说,他最重要的工作是把法拉第的物理观点用数学表达出来。麦克斯韦曾表示电磁波是能在实验室内产生的,这种可能性首先由赫兹在1887年实现了,这时麦克斯韦以去世8年。所以,具有广泛应用价值的无线电工业实际上来源于麦克斯韦的著述。在电磁理论以外,麦克斯韦在物理学其他领域中也有重大贡献。20多岁时麦克斯韦曾写过一篇有关土星的论文证实土星外围的那些换都是由一块块不相粘附的物质组成的,100多年以后当一架“航行者”太空推测器到达土星周围时,证实了这一理论。1871年麦克斯韦被推选为卡文迪什讲座教授。他设计了卡文迪什实验室,而且亲自监督施工。
麦克斯韦的主要科学贡献在电磁学方面,同时在天体物理学、气体分子运动论、热力学、统计物理学等方面,都作出了卓越的成绩。正如量子论的创立者普朗克(Max Plank l858—1947)指出的:“麦克斯韦的光辉名字将永远镌刻在经典物理学家的门扉上,永放光芒。从生地来说,他属于爱丁堡;从个性来说,他属于剑桥大学;从功绩来说,他属于全世界”。
回复
17楼
高斯 (1777-1855)
高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。
他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。
高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。
高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。
1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。
由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。
回复
18楼
赫兹 (1857-1894)
赫兹,德国物理学家,生于汉堡。早在少年时代就被光学和力学实验所吸引。十九岁入德累斯顿工学院学工程,由于对自然科学的爱好,次年转入柏林大学,在物理学教授亥姆霍兹指导下学习。1885年任卡尔鲁厄大学物理学教授。1889年,接替克劳修斯担任波恩大学物理学教授,直到逝世。
赫兹对人类最伟大的贡献是用实验证实了电磁波的存在。
赫兹在柏林大学随赫尔姆霍兹学物理时,受赫尔姆霍兹之鼓励研究麦克斯韦电磁理论,当时德国物理界深信韦伯的电力与磁力可瞬时传送的理论。因此赫兹就决定以实验来证实韦伯与麦克斯韦理论谁的正确。依照麦克斯韦理论,电扰动能辐射电磁波。赫兹根据电容器经由电火花隙会产生振荡原理,设计了一套电磁波发生器,赫兹将一感应线圈的两端接于产生器二铜棒上。当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。由麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。他将一小段导线弯成圆形,线的两端点间留有小电火花隙。因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重迭应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。正如麦克斯韦预测的一样。电磁波传播的速度等于光速。1888年,赫兹的实验成功了,而麦克斯韦理论也因此获得了无上的光彩。赫兹在实验时曾指出,电磁波可以被反射、折射和如同可见光、热波一样的被偏振。由他的振荡器所发出的电磁波是平面偏振波,其电场平行于振荡器的导线,而磁场垂直于电场,且两者均垂直传播方向。1889年在一次著名的演说中,赫兹明确的指出,光是一种电磁现象。第一次以电磁波传递讯息是1896年意大利的马可尼开始的。1901年,马可尼又成功的将讯号送到大西洋彼岸的美国。20世纪无线电通讯更有了异常惊人的发展。赫兹实验不仅证实麦克斯韦的电磁理论,更为无线电、电视和雷达的发展找到了途径。
1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。接着,赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。
1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。
1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。
赫兹对人类文明作出了很大贡献,正当人们对他寄以更大期望时,他却于1894年元旦因血中毒逝世,年仅36岁。为了纪念他的功绩,人们用他的名字来命名各种波动频率的单位,简称“赫”。
回复
19楼
冯·诺伊曼 (1903-1957)
冯·诺伊曼(Neumann,John von),是20世纪最杰出的数学家之一,于1945年提出了“程序内存式”计算机的设计思想。这一卓越的思想为电子计算机的逻辑结构设计奠定了基础,已成为计算机设计的基本原则。由于他在计算机逻辑结构设计上的伟大贡献,他被誉为“计算机之父”。
诺伊曼于1903年出生于匈牙利的布达佩斯。他是一个数字神童,11岁时已显示出数学天赋。12岁的诺伊曼就对集合论,泛函分析等深奥的数学领域了如指掌。青年时期,诺伊曼从著名数学家希尔伯特,从此,他更是如鱼得水,在数学在海洋中畅游。在获得数字博士之后,他成为美国普林斯顿大学的第一批终身教授,那时,他还不到30岁。
诺伊曼不仅是个数学天才,在其他领域也大有建树。他精通七种语言,在化学方面也有相当的造诣,曾获苏黎世高等技术学院化学系大学学位。更为难得的是,他并不仅仅局限于纯数学上的研究,而是把数学应用到其他学科中去。他对经典力学、量子力学和流体力学的数学基础进行过深入的研究,并获得重大成果,这些都说明诺伊曼具备了坚实的数理基础,和广博的知识,为他后来从事计算机逻辑设计提供了坚强的后盾。
1944年,诺伊曼参加原子弹的研制工作,该工作涉及到极为困难的计算。在对原子核反应过程的研究中,要对一个反应的传播做出“是”或“否”的回答。解决这一问题通常需要通过几十亿次的数学运算和逻辑指令,尽管最终的数据并不要求十分精确,但所有的中间运算过程均不可缺少,且要尽可能保持准确。他所在的洛·斯阿拉莫斯实验室为此聘用了一百多名女计算员,利用台式计算机从早到晚计算,还是远远不能满足需要。无穷无尽的数字和逻辑指令如同沙漠一样把人的智慧和精力吸尽。
被计算机所困扰的诺伊曼在一次极为偶然的机会中知道了ENIAC计算机的研制计划,从此他投身到计算机研制这一宏伟的事业中,建立了一生中最大的丰功伟绩。
1944年夏的一天,正在火车站候车的诺伊曼巧遇戈尔斯坦,并同他进行了短暂的交谈。当时,戈尔斯坦是美国弹道实验室的军方负责人,他正参与ENIAC计算机的研制工作。在交谈在,戈尔斯坦告诉了诺伊曼有关ENIAC的研制情况。具有远见卓识的诺伊曼为这一研制计划所吸引,他意识到了这项工作的深远意义。
几天之后,诺伊曼专程来到莫尔学院,参观了尚未竣工的这台庞大的机器,并以其敏锐的眼光,一下子抓住了计算机的灵魂--逻辑结构问题,令年轻的ENIAC的研制们敬佩不已。
因实际工作中对计算的需要以及把数学应用到其他科学问题的强烈愿望,使诺伊曼迅速决定投身到计算机研制者的行列。对业已功成名就的诺伊曼来说,这样做需要极大的勇气,因为这是一个成败未卜的新征途,一旦失败,会影响他已取得的名誉和地位。诺伊曼却以对新事物前途的洞察力,毅然决然地向此征途迈出了第一步,于1944年8月加入莫尔计算机研制小组,为计算机研制翻开了辉煌的一页。
诺伊曼以其非凡的分析、综合能力及雄厚的数理基础,集众人之长,提出了一系列优秀的设计思想,在他和莫尔小组其他成员的共同努力下,只经历了短短的十个月,人类在数千年中积累起来的科学技术文明,终于结出了最激动人心的智慧之花--一个全新的存储程序通用电子计算机方案(EDVAC方案)诞生了。
诺伊曼以“关于EDVAC的报告草案”为题,起草了长达101页的总结报告。报告广泛而具体地介绍了制造电子计算机和程序设计的新思想。报告明确规定,EDVAC计算机由计算器、逻辑控制装置、存储器、输入和输出五大部分组成,并阐述了这五大部分的职能和相互关系。这份报告是计算机发展史上一个划时代的文献,它向世界宣告:电子计算机的时代开始了。
1954年6月,诺伊曼到美国普林斯顿高级研究所工作,出任ISA计算机研制小组的主任职位。在那时,他提出了更加完善的设计报告“电子计算装置逻辑结构初探”。报告中,诺伊曼对EDVAC中的两大设计思想作了进一步的论证,为计算机的设计树立了一座里程碑。
设计思想之一是二进制,他根据电子元件双稳工作的特点,建议在电子计算机中采用二进制。报告提到了二进制的优点,并预言,二进制的采用将大简化机器的逻辑线路。
实践证明了诺伊曼预言的正确性。如今,逻辑代数的应用已成为设计电子计算机的重要手段,在EDVAC中采用的主要逻辑线路也一直沿用着,只是对实现逻辑线路的工程方法和逻辑电路的分析方法作了改进。
程序内存是诺伊曼的另一杰作。通过对ENIAC的考察,诺伊曼敏锐地抓住了它的最大弱点--没有真正的存储器。ENIAC只在20个暂存器,它的程序是外插型的,指令存储在计算机的其他电路中。这样,解题之前,必需先相好所需的全部指令,通过手工把相应的电路联通。这种准备工作要花几小时甚至几天时间,而计算本身只需几分钟。计算的高速与程序的手工存在着很大的矛盾。
针对这个问题,诺伊曼提出了程序内存的思想:把运算程序存在机器的存储器中,程序设计员只需要云存储器中寻找运算指令,机器就会自行计算,这样,就不必每个问题都重新编程,从而大大加快了运算进程。这一思想标志着自动运算的实现,标志着电子计算机的成熟,已成为电子计算机设计的基本原则。
冯·诺伊曼为计算机的发展道路打通了一道道关卡。尽管长期以来,关于二进制的引入和程序内存的发明权一直有争议,但是,诺伊曼在计算机总体配置和逻辑设计上所做的卓越贡献掀起了一次计算机热潮。推动了电子计算机的发展。他无愧于“计算机之父”这一美称。
回复
20楼
长江后浪推前浪!
回复
21楼
都是牛人!
回复