变频器的谐波干扰与抑制
变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其他邻近电气设备。在实际使用过程中,经常遇到变频器谐波干扰问题,下面简单介绍谐波产生的机理、传播途径及有效抑制干扰的方法。 1、 变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 2、 抑制谐波干扰常用的方法 谐波的传播途
变频器谐波危害解决措施
摘 要: 阐述了谐波的概念及产生原理、对变频器产生的谐波问题作了较为详细的描述,并对目前解决谐波问题的措施作了全面的分析,提出了可供参考的解决方案。 关键字:交频器;谐波干扰;谐波危害 变频器是工业调速传动领域中应用较为广泛的设备, 由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载。变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,电力电子装置所产生的谐波污染已成为阻碍电力电子技术自身发展的重大障碍。相关的定义 1.1 什么是谐波 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次
变频器的谐波干扰与抑制办法
变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其他邻近电气设备。在实际使用过程中,经常遇到变频器谐波干扰问题,下面简单介绍谐波产生的机理、传播途径及有效抑制干扰的方法。一、变频器谐波产生机理变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。二、抑制谐波干扰常用的方法谐波的传播途径是传导和辐射,解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离;解决辐射干扰就是对辐
浅谈变频器产生谐波的机理
变频器的基本构成有四部分整流部分中间直流环节逆变部分和控制部分。变频器的输入侧为整流电路,它具有非线性特性,因此不可避免地要产生高次谐波。 一般来讲,若整流电路为m个三相桥式整流电路构成的6m相整流电路,其电源侧电流将含有6m±1次谐波(m=l、2、3、……),当变频器接入电源时这些高次谐波将会污染电源通;通用变频器的输出侧的逆变部分多采用正弦脉冲宽度调制方式,即SPWM方式。这种调制方式虽输出侧的谐波分量较其它控制方式大为减少但仍含有高次谐波分量。这些谐波会对电气设备、电子设中间直流环节.逆变部分及控制部分过热问题,究其原因实质上就是变频器产生某一次谐波激起了电容器与其他部分构成的谐振回路的谐振。 对厂供用电系统的设备影响及危害变频器产生的谐波对厂用供电系统的变输电设备用电设备测量仪表的影响及危害具体见表图变频器的构成备通讯设施产生干扰,使其工作不正常或无法工作变频器产生的谐波干扰及其危害由于变频器在应用中会产生谐波,