1-96m双线有砟钢桁梁拼装架设施工方案(横移顶推法)

DK226+650.325XX特大桥跨度为:(4-32+1-24+7-32+1-24+2-32+1-24+5-32+14-32)m预制后张法预应力混凝土T梁+1-96m钢桁梁+(11-32+2-24+3-32)m预制后张法预应力混凝土T梁,全长1738.94m,采用双线预应力简支T梁和钢桁梁的组合方式。本桥主要为宁启复线跨越XX规划航道段而设。在DK226+957.65处XX航道斜交,本桥在此处按采用1-96m有砟钢桁梁跨越,航道与铁路线夹角为25°,规划航道净高7.5m,最高水位3.2m,最低水位1.4m,规划航道宽70m。

上传人: 上传时间:2018-04-16 10:55:55 文档格式:doc 收藏数:0 页数: 99 评论数: 0 分类标签: 给排水 / 给排水施工设计 / 施工方案
详细介绍 相关推荐 内容评论
详细介绍
1-96m双线有砟钢桁梁拼装架设施工方案(横移顶推法)-图一

1-96m双线有砟钢桁梁拼装架设施工方案(横移顶推法)-图一

特别声明:本资料属于用户上传的共享下载内容,仅只用于学习不可用于商业用途,如有版权问题,请及时 联系站方删除!

收藏
分享

微信扫码分享

点击分享

相关推荐
  • 钢桁梁节段制作检验批质量的验收记录
    本资料为钢桁梁节段制作检验批质量的验收记录,目录齐全,内容完整,可供下载使用
  • 钢桁梁节段制作检验批质量验收记录
    本资料为:钢桁梁节段制作检验批质量验收记录,内容详实,可供下载参考
  • 斜拉桥钢桁梁整节段安装施工工法
    内容简介 大桥下层设四线时速为200公里的快速铁路,上层布置时速80公里的双向六线城市机动车道,其中正桥为(98+196+504+196+98)米双塔三索面三主桁斜拉桥,全桥共78个钢梁桁段,整节段吊装架设其中的52个桁段,现场散拼26个节段(墩、塔顶散拼14个,边、中跨合拢杆件各1个,岸上散拼10个)。
  • 1-96米钢桁梁工程施工方案
    1-96m双线简支钢桁梁,本桥所处地区为南京市六合区,桥址位于宁启铁路滁河既有桥西侧,为跨越滁河而设,中心里程DK25+688.065,主跨结构形式1-96m双线简支钢桁结合梁桥(下承式),本桥场地土为IV类,地震动峰值加速度为0.1g,地震反应谱特征周期分区为一区,地地抗震设防烈度为7度,本桥主跨钢桁梁位于河流主航道上。 1、线路条件 (1)、平、立面 平面位于半径2800m的缓和曲线上,立面位于平坡上。 (2)、线间距 桥上为双线有砟轨道,线间距4.525-4.459m;采用曲梁直做方式设计。 (3)、行车速度 设计行车速度:客车200km/h,货车120km/h。 2、设计荷载 (1)、恒载 ①、结构自重:按钢结构自动加载计算。 ②、二期恒载:二期恒载重量包括道碴、轨道结构、人行道及其他附属结构,共计177.7 kN/m。 (2)、活载: 双线中活载。 (3)、荷载组合:荷载组合分别以主力、主力+附加力进行组合,取最不利组合进行控制。 3、结构形式 (1)、 主桁桁式 本梁为1-96m无竖杆整体节点平行弦三角桁架下承式钢桁梁,节间长度为9.6m,桁高13.6m。桁式如下图: (2)、桥面布置 两片主桁间距12.4m,挡砟墙内宽8.984m,人行道悬于主桁外侧,净宽1m。如下图: 4、主要设计指标 (1)、结构变形 ①、 刚度条件 钢梁跨中静活载挠度:ZK活载下为45.5mm,静活载挠跨比1/2110;中活载下为49.5mm,静活载挠跨比1/1939。钢梁梁端转角1.72‰rad(ZK活载),1.98‰rad(中活载)。竖向自振频率为1.772Hz,风力+摇摆力+离心力作用下水平挠度为20.75mm。 ②、预拱度 按照恒载+1/2静活载产生的挠度设置预拱度,主桁预拱度通过改变上弦拼接缝尺寸的方法实现。斜杆依旧交汇于上弦节点中心处,每个上弦节间拼缝尺寸加大12mm,伸长后上弦跨中相邻的节点中心线间距离为9624mm,上弦其余相邻的节点中心线间距离为9612mm。 (2)、建筑高度 轨底(线路内侧)至下弦中心高度1.327m,轨底(线路内侧)至跨度间梁底建筑高度2.021m, 轨底(线路内侧)至支座顶高度2.235m。 5、主要构造 (1)、主桁 ①、截面形式 主桁上、下弦杆均采用焊接箱形截面,斜腹杆采用焊接箱形截面和H形截面,上弦杆及箱形截面腹杆内宽800mm,内高800mm,板厚16~40mm;H形截面腹杆翼板宽800mm,腹板内高800mm,板厚12~40mm;下弦杆内宽800mm,内高1200mm,板厚24~40mm。 ②、主桁连接 采用焊接整体节点,箱形截面杆件均在节点板外四面拼接,H形截面杆件在节点外三面拼接。主桁杆件与节点之间采用M30高强螺栓连接,弦杆杆件下水平板需设置进人洞,进人洞位于拼接缝中心处,宽300mm。 (2)、桥面 ①、总体布置 钢桥面由桥面板、横梁及横肋、纵肋四个部分组成,其中钢桥面板全桥纵、横向连续,纵向与下弦顶板伸出肢焊接,横向分段焊接。 ②、横梁及横肋 横梁间距9600mm,采用倒T形截面,高1200~1306mm,腹板厚16mm,底板宽740mm,厚28mm,腹板及底板与主桁伸出接头采用栓接连接。两道横梁之间设3道横肋,间距2400mm,采用倒T形截面,高1200~1306mm,腹板厚14mm,底板宽580mm,厚28mm,腹板及底板与主桁伸出接头采用栓接连接。 ③、纵肋 钢桥面板下部共设置了16道U肋和两道板肋, U肋高240mm、厚8mm、间距600mm,板肋高140mm、厚12mm。纵肋全桥连续,遇横梁、横肋腹板则开孔穿过。 (3)、纵向联结系 本梁设上平面纵向联结系,交叉式结构。纵向平联采用工字形截面的杆件,翼板厚16mm,宽400mm;腹板厚12mm,外高400mm。 (4)、桥门架及横联 本梁在端斜杆处设置桥门架,每间隔一个节点处斜杆设置横联。桥门架及横联均采用板式结构,其构成是在上平联横撑下叠焊桥门架及横联构件,该构件采用工字形截面,上翼板宽520mm,厚24mm,下翼板宽520mm,厚24mm,腹板厚16mm。桥门架端部最大高度5724mm,中部最小高度1894mm;横联端部最大高度5324mm,中部最小高度1494mm。
  • 连续钢桁梁双向全悬拼工法文档
    1 前言 某铁路横口3#大桥全长369.45 m,其中6#跨、7#跨为2×64 m连续钢桁梁、5#墩、6#墩、7#墩身高分别为57 m、61 m、38 m;八渡4#大桥全长355.33 m,其中5#跨、6#跨为2×64 m连续钢桁梁,4#墩、5#墩、6#墩身高分别为61 m、74 m、40 m。 两座大桥由于沟谷深切、桥墩身高,原设计采用单向全悬臂拼装,该方案铁道部有成熟的施工经验,悬拼时结构安全容易保证,但需拼装及拆除64 m平衡梁,增加了一倍工作量,工期延长,且高强度螺栓经过一次使用后,表面状况发生变化,扭短系数离散值增大,第二次使用施拧质量难以控制。 经过反复研究比选,决定借鉴预应力钢筋混凝土连续梁悬臂灌筑的方法采用自中间墩顶向两侧双向对称全悬臂拼装方案,与原设计方案相比,实际采用方案投入设备少,施工周期短拼装工作量减少,社会、经济效益显著。
  • 双线有砟轨道隧道洞门名牌及号标布置节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 双线有砟轨道隧道双侧挡墙柱式洞门节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 无人机拼装的框架设计模型这是一款拼装结构的无人机框架设计图,是一种有4个螺旋桨且螺旋桨呈十字形交叉的飞行器,可以搭配微型相机录制空中视频。采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部...
  • 闵浦大桥抗震研究报告(708m钢桁梁斜拉桥)
    闵浦大桥是浦东机场高速公路的闵浦越江工程。根据预可研批复意见及工可报告,该桥位位于奉浦大桥与徐浦大桥之间,距下游徐浦大桥8.7公里,距上游奉浦大桥8.8公里,距上海港界16.3公里。
  • 公轨两用高低塔双索面钢桁梁斜拉桥图纸
    本工程为公轨两用高低塔双索面钢桁梁斜拉桥图纸-S02-5Q 钢桁梁,包含N02节段分段图、N02节段上弦杆构造图、N02节段下弦杆构造图图等,图纸内容完整,表达清晰,制图严谨,欢迎设计师下载使用。
  • 3D图展示钢桁梁顶推法施工步骤
    为了保证钢梁架设时营业线的运输安全,及钢梁架设时不会侵入限界,架设时将钢梁从原位向远离既有线外侧平移7米后搭设膺架进行拼装,拼装时采用125吨的履带吊,根据最大杆件重量20.19t,确定大臂控制在30米内,履带吊中心距离既有线中心为37.29米,即可以保证铁路运营的安全
  • 3x60m连续钢桁梁钢桥cad设计图纸

    此套图是3x60m连续钢桁梁钢桥的设计图纸,内容详细

  • 西平铁路大桥80m钢-混凝土组合桁梁施工文案
    xxx车站附属结构共设置4个出入口,2个风道及一个紧急消防通道。2号风亭和冷却塔设于车站的西南角。 xxx站2号风道基坑内管线众多,根据施工要求,分四期施工,一期采用明挖法施工,二期采用盖挖顺做法施工,三期采用暗挖法施工,四期采用明挖法施工,施工先后顺序为一、二、三、四期,其中一期明挖法基坑上方有南北方向天然气管线一根,二期有南北方向多种管线10根(束),三期采用暗挖,不进行管线改迁,四期基坑范围内无管线。
  • 某大桥主跨钢桁梁斜拉桥跨中合龙施工
    1 概述 某大桥由于受斜拉索的影响,其台龙不同于一般钢桁梁的简支状态合龙,其合龙的难度比一般钢桁梁要大得多其特点为: ①梁的刚度大由于桥面以上的主塔高度仅34m,其高度约为一般斜拉桥的一半.钢粱的跨高比很大.属于用斜拉索加劲的连续钢桁梁混凝土桥面板与钢梁己结台形成整体,其刚度比一般斜拉桥的刚度大很多,给钢梁台龙时的调整增加了一定的 困难。 ② 合龙位置多。合龙位置共有4根弦杆,2根斜杆。 ③合龙点为空问坐标(x,y ,z ) 除向(横桥向)可以单独调整外,其余两个方向(纵向和竖向)调整时相互影响 ④ 钢桁梁的结构体系转变。由于钢桁梁与桥面板、斜拉索共同作用,结构受力复杂,合龙过程要经过多次结构体系转换,超静定结构中内力多次重分配,使合龙过程变得复杂、繁琐。 ⑤ 受温度影响大。合龙孔的跨度大,受日照的影响,钢梁平面弯曲变形、温度伸缩量亦大。 ⑥合龙精度要求高台龙点Ø33mm的栓孔,由工厂按设计圈一次成孔,工地用Ø32、85 mm的冲钉打人,施工过程中不准扩孔。这样复杂的大型钢结构在空中实现多点台龙,对合龙精度要求极高。
  • 双线有砟轨道隧道洞门路堑挡土墙节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 双塔双跨钢桁梁悬索桥散索鞍门架设计图纸17张附36页计算书

     设计依据:《公路桥涵施工技术规范》(JTJ041-2011)

      大桥为双塔双跨钢桁梁悬索桥全长2390.18m,桥梁跨径组成为3×60m悬浇钢构(1480+453.6)m双塔双跨钢桁梁悬索桥+(32.58+3×60.5)m悬浇连续梁。散索鞍鞍体采用铸焊结合的结构方案。鞍槽用铸钢铸造,鞍体由钢板焊成。散索鞍最大构件吊重为115t,采用门架进行吊装。散索鞍各部件经车辆运输后到达锚碇指定位置,利用门架和提升系统进行吊装。

      ……

      散索鞍门架的设计主要考虑锚碇前舱内顶部平台尺寸、索鞍吊装方式、索鞍运输方式,运输车辆停靠位置,索鞍本身大小尺寸,夹索入鞍操作,吊装角度,索塔施工过程中留下的施工平台伸出尺存,空缆线形,滑轮组运行时所占空间高度等因素,综合考虑。门架结构采用HW350X350以及[28a型钢组合,横桥向长度19m,悬臂长9m,单个门架顺桥向2片,顶部型钢接合,底部与预埋钢板焊接,顺桥向从顶部伸出斜撑支撑,改善门架稳定性。门架顶设有工作平台。在横桥向吊装完散索鞍后,对支架进行改造,进行顺桥向夹索入鞍糙所。

      ……

      计算荷载:索鞍底座重量:34.82t,实际按照40t计入;散索鞍最大吊装重量:115t (实际按照120t计入);门架顶移动平车重量按照6t计入;门架顶设置2台牵引力为10t卷扬机,卷扬机重量每台按照5t计算,布置在与索鞍起吊端相对应的门架的另一端。索股入锚调整单根提起所产生的对边跨(xx侧)作用按照比空缆高度高3m计算。计算采用抛物线模型,主缆自重简化换算成延跨径水平向均布。

  • 钢构件采用卧式拼装法和说明
    构件吊到平台上,使拼装接点对齐,穿上螺栓,用专用卡具卡紧,校核成形后构件的尺寸
  • 钢构件采用立式拼装法和说明
    构件成型后,检查构件的拼接垂直度、几何尺寸(包括起拱要求),符合设计要求方可焊接固定。焊接应符合“吊装焊接”要求
  • 双线有砟轨道隧道洞内外水沟连接节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • [四川]铁路双线隧道锚段衬砌施工图232张(无砟知名大院)

    资料目录 设计说明2 目录 锚段衬砌内轮廓4 锚段区段平面布置图2 II型无仰拱非绝缘一般锚段复合式衬砌断面2 IIIa型非绝缘一般锚段复合式衬砌断面2 IIIb型非绝缘一般锚段复合式衬砌断面2 IIIb型非绝缘一般锚段复合式衬砌格栅钢架设计图4 IVa、IVb型非绝缘一般锚段复合式衬砌断面2 IVa型非绝缘一般锚段复合式衬砌断面5 IVb型非绝缘一般锚段复合式衬砌断面5 IVa型非绝缘一般锚段复合式衬砌格栅钢架设计图5 IVb型非绝缘一般锚段复合式衬砌型钢钢架设计图4 Va、Vb型非绝缘一般锚段复合式衬砌断面2 Va型非绝缘一般锚段复合式衬砌钢筋布置图5 Vb型非绝缘一般锚段复合式衬砌钢筋布置图5 Va型非绝缘一般锚段复合式衬砌型钢钢筋设计图5 Vb型非绝缘一般锚段复合式衬砌型钢钢筋设计图5 II型无仰拱非非绝缘下锚段复合式衬砌断面2 IIIa型非绝缘下锚段复合式衬砌断面2 IIIb型非绝缘下锚段复合式衬砌断面2 IIIb型非绝缘下锚段复合式衬砌钢筋布置图5 IIIb型非绝缘下锚段复合式衬砌格栅钢架设计4 IVa、IVb型非绝缘下锚段复合式衬砌断面2 IVa型非绝缘下锚段复合式衬砌钢筋布置图5 IVb型非绝缘下锚段复合式衬砌钢筋布置图5 IVa型非绝缘下锚段复合式衬砌格栅钢架设计图5 IVb型非绝缘下锚段复合式衬砌型钢钢架设计图4 Va、Vb型非绝缘下锚段复合式衬砌断面2 Va型非绝缘下锚段复合式衬砌钢筋布置图5 Vb型非绝缘下锚段复合式衬砌钢筋布置图5 Va型非绝缘下锚段复合式衬砌型钢钢架设计图4 Vb型非绝缘下锚段复合式衬砌型钢钢架设计图4 II型无仰拱绝缘一般锚段复合式衬砌断面2 IIIa、IIIb型绝缘一般锚段复合式衬砌断面2 IIIb型绝缘一般锚段复合式衬砌格栅钢架设计图4 IVa、IVb型绝缘一般锚段复合式衬砌断面2 IVa型绝缘一般锚段复合式衬砌钢筋布置图5 IVb型绝缘一般锚段复合式衬砌钢筋布置图5 IVa型绝缘一般锚段复合式衬砌格栅钢架设计图5 IVb型绝缘一般锚段复合式衬砌型钢钢架设计图4 Va、Vb型绝缘一般锚段复合式衬砌断面2 Va型绝缘一般锚段复合式衬砌钢筋布置图5 Vb型绝缘一般锚段复合式衬砌钢筋布置图5 Va型绝缘一般锚段复合式衬砌型钢钢架设计图5 Vb型绝缘一般锚段复合式衬砌型钢钢架设计图4 II型无仰拱绝缘下锚 隔离开关段复合式衬砌断面2 IIIa、IIIb型绝缘下锚 隔离开关段复合式衬砌断面4 IIIb型绝缘下锚段复合式衬砌钢筋布置图5 IIIb型绝缘下锚 隔离开关段复合式衬砌格栅钢架设计图5 IVb型绝缘一般锚段复合式衬砌型钢钢架设计图4 IVa、IVb型绝缘下锚 隔离开关段复合式衬砌断面2 IVb型绝缘下锚 隔离开关段复合式衬砌型钢钢架设计图3 Va、Vb型绝缘下锚 隔离开关段复合式衬砌断面2 Va型绝缘下锚 隔离开关段复合式衬砌钢筋布置图5 Vb型绝缘下锚 隔离开关段复合式衬砌钢筋布置图5 Va型绝缘绝缘下锚 隔离开关段复合式衬砌钢筋布置图4 Vb型绝缘绝缘下锚 隔离开关段复合式衬砌钢筋布置图4 非绝缘下锚段与普通复合式衬砌接头处挡头墙设计图2 非绝缘下锚段与非绝缘一般锚段复合式衬砌接头处挡头墙设计图2 绝缘下锚段与普通复合式衬砌接头处挡头墙设计图2 非绝缘下锚段与普通复合式衬砌接头处挡头墙设计图2 下锚段挡头墙钢筋布置图 下锚段扶手栏杆设计图 下锚段防排水设计图

  • 双线有砟轨道隧道洞门挡墙式检查梯节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 双线有砟轨道隧道洞门端墙与衬砌连接钢筋布置节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 双线有砟轨道隧道双侧挡墙式隧道洞门节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 双线有砟轨道隧道双侧挡墙台阶式隧道洞门节点详图设计

    设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 西平铁路大桥80m钢-混凝土组合桁梁施工方案
    xx大桥左、右线在桥址处分别跨越银武高速公路,铁路本段位于1200m及1600m的曲线上,左、右线中心与高速公路斜交角度分别为57°和55°。设计采用1孔80m钢-混凝土组合桁梁跨高速公路,梁长82米,计算跨径80m,桁高9m,节间距10m,桁中心距6.7m。桁架形式为无竖杆的三角形,上弦杆为钢筋混凝土结构,下弦为预应力钢筋混凝土结构。上弦杆采用1.1m宽,1.2m高的钢筋混凝土矩形截面,下弦采用槽型截面,一般梁高1.5m,梁端高2.0m,道床板厚度采用40~45cm的钢筋混凝土板,梁端板厚90~95cm,梁底宽为7.8m,顶宽9.4m,,端横撑为高1.0 m、宽0.8m的混凝土截面,中横撑为宽0.35m,高0.6m工字钢。下弦纵向为全预应力结构,横向受力为钢筋混凝土结构。腹杆采用650×550 mm的矩形钢箱,钢箱材质为Q345qE。
  • 武汉某跨江大桥连续钢桁梁施工组织设计方案
    桥址区不良地质现象主要表现为陡崖巨厚层硬质砂岩的崩塌和错落,诱因是崖下软岩因风化作用及水的软化、水流冲蚀或淘浊破坏,导致上部巨厚层砂岩在重力作用下发生拉裂、蠕动,直至崩塌或错落,失稳岩体的后缘由贯穿性大的节理控制
  • 西平铁路大桥80m钢混凝土组合桁梁施工文案
    xx大桥左、右线在桥址处分别跨越银武高速公路,铁路本段位于1200m及1600m的曲线上,左、右线中心与高速公路斜交角度分别为57°和55°。设计采用1孔80m钢-混凝土组合桁梁跨高速公路,梁长82米,计算跨径80m,桁高9m,节间距10m,桁中心距6.7m。桁架形式为无竖杆的三角形,上弦杆为钢筋混凝土结构,下弦为预应力钢筋混凝土结构。上弦杆采用1.1m宽,1.2m高的钢筋混凝土矩形截面,下弦采用槽型截面,一般梁高1.5m,梁端高2.0m,道床板厚度采用40~45cm的钢筋混凝土板,梁端板厚90~95cm,梁底宽为7.8m,顶宽9.4m,,端横撑为高1.0 m、宽0.8m的混凝土截面,中横撑为宽0.35m,高0.6m工字钢。下弦纵向为全预应力结构,横向受力为钢筋混凝土结构。腹杆采用650×550 mm的矩形钢箱,钢箱材质为Q345qE。
  • 预制混凝土节段箱梁拼装架设施工方案
    预制节段梁由专业队伍在梁场生产供应,箱梁架设拟从本标段的起点墩和终点墩向中间方向逐跨采用JQ900型(额定起重重量900吨)上行式架桥机现场胶接拼装、整孔架设。对于起始的第1跨及第2跨节段梁由运梁车从地面施工便道运至架桥机下方,然后由架桥机直接吊起梁段至安装位置进行梁段的拼装。其余各桥跨的节段梁则由存梁场龙门吊机提升上桥面,从桥上运梁至架桥机后方喂梁,利用50t起重小车的转动装置将节段梁在空中转动90°而就位。     节段箱梁架设流程:施工准备→架桥机拼装→架桥机检验→节段梁吊装及调整→节段梁胶拼及临时束张拉→整孔预应力张拉→整孔落梁就位→架桥机纵移过孔→架桥机调整进行下一孔架设。
  • 双线特大桥128米双线简支钢桁梁浮拖法安装施工方案
    双线特大桥128米双线简支钢桁梁浮拖法安装施工方案,供设计师参考。
  • DN400PVC排气烟囱钢支架设计图.
    钢管支架,支撑DN400 PVC尾气排气管,管标高20.0m,支架标高18.0m,详细结点图
  • 钢构件进场验收堆放转运与现场拼装方案
    现场构件验收主要是焊缝质量、构件外观和尺寸检查及制作资料的验收和交接,质量控制重点在钢结构制作厂。
  • 增建淮河大桥钢桁梁浮拖施工技术总结
    本资料为增建淮河大桥钢桁梁浮拖施工技术总结,每孔梁主桁重1137.85kN,联结系重271.32kN,桥面系重607.02kN,高强度螺栓重72.86kN,支座重61.07kN,人行道桥面重300.01kN,检查设备重63.59kN,总重计2513.72kN。最大杆件重量46.56kN(跨中上弦杆,长15.64m)。 内容详实,值得参考下载。
  • 特大钢桁梁悬索桥施工图(CAD图345张)

    内容简介 分离式悬索桥:主跨1176m。   公路等级:四车道高速公路   设计行车速度:80 km/h   设计汽车荷载:公路—I 级   桥面坡度:纵坡 0.8%,横坡 2.0%   钢桁梁:梁宽27m;梁高7.5m   桥面宽度:0.5 m(防撞护栏)+11.0 m(行车道)+0.5 m(防撞护栏)+ 0.5 m(中央分隔带)+ 0.5 m(防撞护栏)+11.0 m(行车道)+0.5 m(防撞护栏),桥面全宽24.5 m      设计基准风速:34.9m/s   设计基 准 期:100年   设计安全等级:一级   历史最高洪水位:H=236.78m   高程控制:1985年国家高程基准。   地震基本烈度: 地震动峰值加速度0.05g,地震动反应谱特征周期为0.35s;   ……   结构设计:锚碇、索塔、钢桁加劲梁、缆索系统、桥台、桥面系、防撞护栏、检修道支座及伸缩缝、风障气动稳定板和封槽、泄水管和灯具底座、涂装、检查车桥面铺装   ……   施工要点:隧道式锚碇施工、重力式锚碇施工、索塔施工、钢桁加劲梁制造、钢桁加劲梁的架设、主缆索股的架设及要求、主散索鞍安装、索夹及缆套、缆索系统的施工控制   ……   专题研究:抗风、抗震   ……   大桥缆吊系统说明书   钢桁梁施工图目录、锚碇施工图设计图纸目录、施工图缆索系统图纸目录   总体设计说明书(施工图设计)   锚碇施工阶段设计说明书、钢桁梁施工图设计说明书   桥位平面图、桥址地形图、地质纵断面图、桥型总体布置图   xx岸锚锭总体布置图2、xx岸锚锭总体构造图2   xx岸锚碇锚块一般构造图、xx岸锚锭散索鞍支墩及连接部一般构造图   xx岸锚碇前锚室一般构造图、对岸锚锭总体布置图2、对岸锚锭总体构造图3   锚固系统布置图3、锚锭索股布置图4、锚锭索股连接器布置图   锚锭锚固单元构造图2、锚锭索股连接器构造图2、锚锭预应力锚具构造图4   锚碇预应力钢束布置图4、预应力钢束槽口构造图3、xx岸索塔一般构造图(2)   xx岸索塔细部构造图4、对岸索塔一般构造图2、对岸索塔细部构造图3   钢桁加劲梁标准断面图、钢桁加劲梁总体布置图4、主桁架杆件分类图2   主横桁架杆件分类图2、钢桁加劲梁焊缝设计图7   钢桁加劲梁主桁上弦ZS1杆件一般构造图4   钢桁加劲梁主桁上弦ZS2杆件一般构造图5   钢桁加劲梁主桁上弦ZS3杆件一般构造图5   钢桁加劲梁主桁上弦ZS4杆件一般构造图5   钢桁加劲梁主桁上弦ZS5杆件一般构造图5   钢桁加劲梁主桁上弦ZS6杆件一般构造图2   主桁架上弦ZS7杆件一般构造图6   主桁架上弦ZS8杆件一般构造图6   主桁架上弦ZS9杆件一般构造图6   钢桁加劲梁主桁下弦ZX1杆件一般构造图4   钢桁加劲梁主桁下弦ZX2杆件一般构造图4   钢桁加劲梁主桁下弦ZX3杆件一般构造图4   主桁架下弦ZX4杆件一般构造图6   钢桁加劲梁主桁下弦ZX5杆件一般构造图4   主桁腹杆ZF1~ZF9一般构造图2   主横桁架上横梁HS1一般构造图2   主横桁架上横梁HS1`一般构造图3   主横桁架上横梁HS2一般构造图2   主横桁架上横梁HS2`一般构造图2   主横桁架上横梁HS2``一般构造图2   主横桁架上横梁HS3一般构造图2   主横桁架上横梁HS3`一般构造图3   主横桁架上横梁HS4一般构造图   主横桁架上横梁HS4`一般构造图2   主横桁架上横梁HS5一般构造图3   主横桁架上横梁HS6一般构造图   主横桁架上横梁HS7一般构造图3   主横桁架上横梁HS8一般构造图   主横桁架上横梁HS8`一般构造图   主横桁架上横梁HS9一般构造图3   主横桁架上横梁HS10一般构造图3   主横桁架上横梁HS10`一般构造图2   主横桁架上横梁HS11一般构造图3   主横桁架上横梁HS12一般构造图   主横桁架上横梁HS12`一般构造图   主横桁架上横梁HS13一般构造图3   主横桁架上横梁HS14一般构造图2   主横桁架下横梁HX1一般构造图2   主横桁架下横梁HX1`一般构造图2   主横桁架下横梁HX2一般构造图2   主横桁架下横梁HX2`一般构造图2   主横桁架下横梁HX3一般构造图3   主横桁架下横梁HX3`一般构造图3   主横桁架下横梁HX4一般构造图2   主横桁架下横梁HX5一般构造图3   主横桁架下横梁HX6一般构造图3   主横桁架下横梁HX7一般构造图3   主横桁架下横梁HX8一般构造图3   主横桁架下横梁HX9一般构造图3   主横桁架下横梁HX10一般构造图2   主横桁架下横梁HX11一般构造图3   主横桁架下横梁HX12一般构造图3   对岸右幅桥上横梁增加横隔板示意图   主横桁架腹杆HF1~HF6一般构造图2   上平联杆件PS1~PS6一般构造图2   下平联杆件PX1~PX7一般构造图2   抗风稳定板FW1、FW2一般构造图   主桁架腹杆手孔封板构造图、钢桁加劲梁主桁临时铰构造图2   钢桁加劲梁架设施工流程2、缆索系统总体布置图   主缆一般构造图2、索股构造及长度3、主缆用镀锌钢丝技术条件   主缆索股组件及构造2、主缆防护材料及构造图、吊索中央扣斜拉索布置图   吊索一般构造图4、中央扣斜拉索一般构造图、吊索锚头构造图2   中央扣斜拉索锚头构造图、吊索锚杯构造图2、中央扣斜拉索锚杯构造图   吊索叉形耳板构造图2、销轴及挡板构造图2、吊索夹具构造图2   夹具支架、扣件、垫块构造图2   吊索减震架构造3、索夹总体布置图   吊索减震架本体、扣件3   端部吊索锚固底座构造图2、端部吊索预应力岩锚布置图2   AT类索夹构造图2、A类索夹构造图3   B类索夹构造图3、C类索夹构造图3   D类索夹构造图3、E类索夹构造图3   F类索夹构造图3、G类索夹构造图3   G类索夹构造图2、中央扣索夹构造图3   封闭索夹B构造图4、索夹标准件构造图4   塔顶主缆防护套构造图4、锚碇处主缆防护套构造图5   主缆检修道总体布置图2、缆索系统施工流程图   xx岸主索鞍总成图3、对岸主索鞍总成图3   对岸主索鞍鞍体构造图2、xx岸散索鞍总成图3   xx岸散索鞍鞍体构造图2、对岸散索鞍总成图3   对岸散索鞍鞍体构造图2   ……共计345张,编制于2007年    主索鞍总成图 主桁架下弦 索夹构造 散索鞍总成图 锚碇构造 钢桁加劲梁架设施工步骤 钢桁加劲梁标准断面图 端部吊索预应力岩锚布置图 吊索夹具构造图 主桁架上弦

  • 连续钢桁梁加固工程cad设计施工图纸
    内容简介 三、加固设计标准 1、设计荷载:汽—20、挂—100; 2、桥面净宽:0.75(人行道)+7(行车道)+0.75(人行道)=8.5米; 四、主桥加固方案及应力计算 1、加固方案 根据公路局委托,按汽—20、挂—100标准进行桁架加固。计算桁架各杆件、螺栓及节点板内力,对需要加固的杆件和节点进行编号,逐一进行加固。 1.1杆件加固 在原杆件的平面上新增钢板,并用高强螺栓与原杆件连接,增大杆件截面面积,提高杆件承载能力。 1.2节点板加固 无斜腹杆的节点板加固方法是在原节点板外增加连接板提高节点承载能力;有斜腹杆的节点板加固方法是取消原连接板,在原节点板外增加新节点板,与原节点板用高强螺栓连接,提高节点承载能力。 1.3横梁加固 原横梁为焊接“工”字型钢,加固时将横梁顶、底面各焊接一块钢板,提高其抗弯和抗扭能力。 1.4横梁连接加固 更换原横梁连接角钢为大的角钢,并增加高强螺栓数量。 为了论证该加固方案可行性,设计人员与西安建筑科技大学、宝鸡桥梁厂、西安锻压机械厂等单位专家到现场查看,解决了以下问题: (1)节点板没有明显变形; (2)更换一些高强螺栓,发现螺栓无锈蚀,螺栓孔、螺杆无变形,螺栓拆卸比较容易; (3)西安建筑科技大学对拆除的螺栓进行试验,测得抗滑移系数大于0.4; (4)专家认为现场钻孔精度可以保证。 共有图纸13张
点击查看更多
全部评论 我要评论
暂无评论