本资料为:悬索桥锚碇预应力锚固系统可换索蜂窝管施工工法获2006年度中交集团级工法,内容详实,可供下载参考。
悬索桥锚碇预应力锚固系统可换索蜂窝管施工工法获2006年度中交集团级工法-图一
根据锚碇分块施工的特点,施工期间分块计算各块前后的基底应力;后浇段完成后,锚碇形成整体,回填土、压重、主缆拉力由锚碇整体承担。正常荷载下分以下三个工况计算基底压应力: 1.锚块、支墩基础各自施工完成 2.后浇段施工,完成回填、压重并施加恒载缆力(成桥状态) 3.常荷载最大缆力 地震力作用下分以下2个工况计算基底压应力: 4.竖向向下地震力+水平向锚后地震力+(恒载缆力-地震缆力) 5.竖向向上地震力+水平向锚前地震力+(恒载缆力+地震缆力)
主线全线采用双向四车道高速公路标准:设计车速为80km/h,路基宽度24.5m。采用塔梁分离式悬索桥方案,桩号为K14+000.00~ZK15+073.65(YK15+072.53),全长约1073.65m,悬索桥的主跨1176m。 公路等级:四车道高速公路 设计行车速度:80 km/h 设计汽车荷载:公路—I 级 桥面坡度:纵坡 0.8%,横坡 2.0% 钢桁梁:梁宽27m;梁高7.5m 桥面宽度:0.5 m(防撞护栏)+11.0 m(行车道)+0.5 m(防撞护栏)+ 0.5 m(中央分 隔带)+ 0.5 m(防撞护栏)+11.0 m(行车道)+0.5 m(防撞护栏),桥面全宽24.5 m 设计基准风速:34.9m/s 设计基 准 期:100年 设计安全等级:一级 峒河历史最高洪水位:H=236.78m…… 2)锚固系统设计 为减少用钢量,同时合理设计锚块和锚塞体形状,并节约混凝土用量,本桥采用预应力锚固系统。预应力钢束起初沿索股发散方向布置,再按一定半径收敛最后与大缆合力线平行锚固于后锚面,前后锚面均为大缆合力线垂直的平面…… 其中包括: 锚锭总体布置图 锚碇锚块一般构造图 锚锭总体构造图 锚锭散索鞍支墩及连接部一般构造图 锚碇前锚室一般构造图 锚碇处主缆防护套构造图 等 编制于2006年
2、本路段路面设计年限为15年,路面上面层为4厘米厚的AC-13(C)细粒式改性沥青混凝土,中面层为6厘米厚的AC-20(C)中粒式改性沥青混凝土,下面层为8厘米厚的AC-25(C)粗粒式沥青混凝土. 4、为了保证路基的强度,给路面提供一个很好的受力基础,路床0~80cm范围建议采用未筛分碎石或土夹石填筑,让其达到图中的竣工验收弯沉值。 5、施工时为加强路面结构层间的紧密结合及防止雨水过多渗入基层,沥青面层与水泥稳定碎石间加铺下封层;沥青面层之间设粘层沥青。
内容简介 根据锚碇分块施工的特点,施工期间分块计算各块前后的基底应力;后浇段完成后,锚碇形成整体,回填土、压重、主缆拉力由锚碇整体承担。正常荷载下分以下三个工况计算基底压应力: 1.锚块、支墩基础各自施工完成 2.后浇段施工,完成回填、压重并施加恒载缆力(成桥状态) 3.常荷载最大缆力 地震力作用下分以下2个工况计算基底压应力: 4.竖向向下地震力+水平向锚后地震力+(恒载缆力-地震缆力) 5.竖向向上地震力+水平向锚前地震力+(恒载缆力+地震缆力)
内容简介 2、本路段路面设计年限为15年,路面上面层为4厘米厚的AC-13(C)细粒式改性沥青混凝土,中面层为6厘米厚的AC-20(C)中粒式改性沥青混凝土,下面层为8厘米厚的AC-25(C)粗粒式沥青混凝土. 4、为了保证路基的强度,给路面提供一个很好的受力基础,路床0~80cm范围建议采用未筛分碎石或土夹石填筑,让其达到图中的竣工验收弯沉值。 5、施工时为加强路面结构层间的紧密结合及防止雨水过多渗入基层,沥青面层与水泥稳定碎石间加铺下封层;沥青面层之间设粘层沥青。
第一阶段 1、整平场地,基坑开挖,边坡防护。 2、桩基施工,承台施工,浇筑塔座。 3、立模浇筑塔柱起步段。 4、安装塔吊和施工电梯。 5、分段浇筑下塔柱至下横梁处,设置下横梁预埋钢筋及模板支架、桁架片的预埋件。 6、继续分段浇筑塔柱至一定高度,塔柱间设置水平支撑。 7、安装下横梁支架并预压。
设计技术标准 1). 主桥桥宽:4m(人行道)+5m(慢车道)+4m(分隔带)+16m(快车道)+4m(分隔带)+5m(慢车道)+4m(人行道)=42m; 2). 设计荷载:城-B级; 人群荷载按《城市桥梁荷载设计标准》执行; 3). 设计纵、横坡:桥面竖曲线R=3000米; 纵坡2.5%; 双向横坡:1.7%; 4). 航道标准:六级航道,设计水位3.80米(黄海高程); 5). 抗震设防:抗震设计按地震基本烈度6度设防,抗震措施按7度设防; 6). 桥面铺装:8cm沥青混凝土; 7). 过桥管线:设计时考虑各种通讯管线过桥(人行道板下);
设计技术标准 1). 主桥桥宽:4m(人行道)+5m(慢车道)+4m(分隔带)+16m(快车道)+4m(分隔带)+5m(慢车道)+4m(人行道)=42m; 2). 设计荷载:城-B级; 人群荷载按《城市桥梁荷载设计标准》执行; 3). 设计纵、横坡:桥面竖曲线R=3000米; 纵坡2.5%; 双向横坡:1.7%; 4). 航道标准:六级航道,设计水位3.80米(黄海高程); 5). 抗震设防:抗震设计按地震基本烈度6度设防,抗震措施按7度设防; 6). 桥面铺装:8cm沥青混凝土; 7). 过桥管线:设计时考虑各种通讯管线过桥(人行道板下);
设计技术标准 1). 主桥桥宽:4m(人行道)+5m(慢车道)+4m(分隔带)+16m(快车道)+4m(分隔带)+5m(慢车道)+4m(人行道)=42m; 2). 设计荷载:城-B级; 人群荷载按《城市桥梁荷载设计标准》执行; 3). 设计纵、横坡:桥面竖曲线R=3000米; 纵坡2.5%; 双向横坡:1.7%; 4). 航道标准:六级航道,设计水位3.80米(黄海高程); 5). 抗震设防:抗震设计按地震基本烈度6度设防,抗震措施按7度设防; 6). 桥面铺装:8cm沥青混凝土; 7). 过桥管线:设计时考虑各种通讯管线过桥(人行道板下);
设计技术标准 1). 主桥桥宽:4m(人行道)+5m(慢车道)+4m(分隔带)+16m(快车道)+4m(分隔带)+5m(慢车道)+4m(人行道)=42m; 2). 设计荷载:城-B级; 人群荷载按《城市桥梁荷载设计标准》执行; 3). 设计纵、横坡:桥面竖曲线R=3000米; 纵坡2.5%; 双向横坡:1.7%; 4). 航道标准:六级航道,设计水位3.80米(黄海高程); 5). 抗震设防:抗震设计按地震基本烈度6度设防,抗震措施按7度设防; 6). 桥面铺装:8cm沥青混凝土; 7). 过桥管线:设计时考虑各种通讯管线过桥(人行道板下);
设计技术标准 1). 主桥桥宽:4m(人行道)+5m(慢车道)+4m(分隔带)+16m(快车道)+4m(分隔带)+5m(慢车道)+4m(人行道)=42m; 2). 设计荷载:城-B级; 人群荷载按《城市桥梁荷载设计标准》执行; 3). 设计纵、横坡:桥面竖曲线R=3000米; 纵坡2.5%; 双向横坡:1.7%; 4). 航道标准:六级航道,设计水位3.80米(黄海高程); 5). 抗震设防:抗震设计按地震基本烈度6度设防,抗震措施按7度设防; 6). 桥面铺装:8cm沥青混凝土; 7). 过桥管线:设计时考虑各种通讯管线过桥(人行道板下);
2)本桥采用无支架缆索吊装施工斜拉扣挂悬拼施工工艺,拟采用两套主索系统抬吊,其中每一套主索为7直径50密封钢丝绳,每套设计吊重为65吨,因此总设计吊重为130吨。 3)拱肋扣索拟采用钢铰线,主扣塔均采用N型万能杆件拼装而成. 4)两岸主地锚、扣地锚均采用重力式地锚。其中主地锚位桥轴线上、扣地锚位于拱轴线上。 5)钢管拱肋拟在工厂加工制作,然后通过船运至索道下或陆上平板车运至塔架前起吊就位,横梁及车道板拟于现场预制再装上平移平车横移到相应的位置,然后再通缆索系统起吊运输。 6)主塔位于2#墩边的地面上、中塔位于9#墩顶、萧山岸主塔位于16#墩边的地面上。
2、本路段路面设计年限为15年,路面上面层为4厘米厚的AC-13(C)细粒式改性沥青混凝土,中面层为6厘米厚的AC-20(C)中粒式改性沥青混凝土,下面层为8厘米厚的AC-25(C)粗粒式沥青混凝土. 4、为了保证路基的强度,给路面提供一个很好的受力基础,路床0~80cm范围建议采用未筛分碎石或土夹石填筑,让其达到图中的竣工验收弯沉值。 5、施工时为加强路面结构层间的紧密结合及防止雨水过多渗入基层,沥青面层与水泥稳定碎石间加铺下封层;沥青面层之间设粘层沥青。
设计技术标准 1). 主桥桥宽:4m(人行道)+5m(慢车道)+4m(分隔带)+16m(快车道)+4m(分隔带)+5m(慢车道)+4m(人行道)=42m; 2). 设计荷载:城-B级; 人群荷载按《城市桥梁荷载设计标准》执行; 3). 设计纵、横坡:桥面竖曲线R=3000米; 纵坡2.5%; 双向横坡:1.7%; 4). 航道标准:六级航道,设计水位3.80米(黄海高程); 5). 抗震设防:抗震设计按地震基本烈度6度设防,抗震措施按7度设防; 6). 桥面铺装:8cm沥青混凝土; 7). 过桥管线:设计时考虑各种通讯管线过桥(人行道板下);
根据锚碇分块施工的特点,施工期间分块计算各块前后的基底应力;后浇段完成后,锚碇形成整体,回填土、压重、主缆拉力由锚碇整体承担。正常荷载下分以下三个工况计算基底压应力: 1.锚块、支墩基础各自施工完成 2.后浇段施工,完成回填、压重并施加恒载缆力(成桥状态) 3.常荷载最大缆力 地震力作用下分以下2个工况计算基底压应力: 4.竖向向下地震力+水平向锚后地震力+(恒载缆力-地震缆力) 5.竖向向上地震力+水平向锚前地震力+(恒载缆力+地震缆力)
根据锚碇分块施工的特点,施工期间分块计算各块前后的基底应力;后浇段完成后,锚碇形成整体,回填土、压重、主缆拉力由锚碇整体承担。正常荷载下分以下三个工况计算基底压应力: 1.锚块、支墩基础各自施工完成 2.后浇段施工,完成回填、压重并施加恒载缆力(成桥状态) 3.常荷载最大缆力 地震力作用下分以下2个工况计算基底压应力: 4.竖向向下地震力+水平向锚后地震力+(恒载缆力-地震缆力) 5.竖向向上地震力+水平向锚前地震力+(恒载缆力+地震缆力)
1. 本桥斜拉索采用高强度低松弛镀锌钢绞线拉索体系。 2. 为保护索体不受损伤,每索下端离梁面2.5m高范围外包不锈钢管。
结构概况:
1.主桥采用跨径为40+118+40米的自锚式悬索桥,主跨主缆垂跨比为1/7.
2.西端引桥采用4X28米预应力混凝土连续箱梁+16米钢筋混凝土简支箱梁。
3.东引桥为一跨25.3米钢筋混凝土简支箱梁。
4.桥梁下部结构除8、9号墩采用浅基础外,其余均采用钻(挖)孔桩基础。