xx大桥是xx市xx分区和xx分区之间跨越富xx、实现两区连接的重要的城市桥梁,位于富xx第一大桥和xx大桥之间,项目所在地为xx市政治和经济中心。 xx大桥将xx分区内320国道和xx分区内杭新景高速公路连接起来,xx大桥将是xx分区和xx分区的中心纽带。
富阳320国道至杭新景高速公路连接线某大桥工程施工组织设计/-图一
富阳320国道至杭新景高速公路连接线某大桥工程施工组织设计/-图二
富阳320国道至杭新景高速公路连接线某大桥工程施工组织设计/-图三
富阳320国道至杭新景高速公路连接线某大桥工程施工组织设计/-图四
富阳320国道至杭新景高速公路连接线某大桥工程施工组织设计/-图五
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。 主拱肋钢管第Ⅰ(Ⅺ)和Ⅱ(Ⅹ)段下弦钢管采用φ1000×22mm钢管,其余各段均采用φ1000×20mm钢管。主拱肋钢管和缀板内都灌注混凝土,采用早强、缓凝、微膨胀50号混凝土。 拱肋底部设计水位以下、常水位以上的钢管桁架外包混凝土,增强该部分拱肋防腐能力,该部分混凝土采用50号S8级防水混凝土。 拱肋预制放样时,考虑了设置32.5cm拱顶予拱度。计入予挠度的拱轴线用五次抛物线拟合,拟合的拱轴线方程为: y = 2.26652×10-3 x2 -1.14597×10-6x3+1.93355×10-8x4+3.43585×10-13x5。 坐标原点为拱顶拱肋中心,X轴为水平方向,Y轴为竖直向下。 1.2 横向联系 两道拱肋之间设有11道横撑以保证拱肋横向稳定。其中拱顶设一道钢桁架一字形横撑,其余均为钢桁架K撑。 1.3立柱、横梁 拱上立柱采用钢管混凝土结构,较高的1-4号立柱钢管截面采用φ1000 x12 m m,其它立柱钢管截面采用φ800 x12 m m,钢管内均灌注早强、缓凝、微膨胀50号混凝土。对于较高的1-4号立柱之间纵桥向和横桥向均设置剪刀撑,剪刀撑采用φ610x12mm钢管。 横梁采用预制的预应力混凝土结构,横梁内预应力钢束分两阶段张拉,予制横梁时张拉N1号钢束2根并封锚,待横梁吊装就位、桥面板架设完毕后,再张拉N2号钢束2根并封锚。锚具均采用OVM锚具。 横梁通过预埋的钢板及竖向预应力筋和立柱连接。 1.4桥面系 主桥行车道系由先张法预应力混凝土空心板(板高50厘米)、8厘米厚现浇桥面混凝土组成,桥面铺装8厘米沥青混凝土。 行车道板采用先简支后连续结构,主桥范围不设伸缩缝,仅在主桥和引桥交界的过渡墩上设置D240伸缩缝。 1.5 拱座基础 主拱拱座为分离式扩大基础。基底应落在完整中风化砂岩上,基底基本承载力按1000Kpa设计。拱座内预埋钢管应与主拱钢管焊成整体,以利于传递拱脚截面内力。主拱基础地质资料按《工程地质勘察报告》取用。 1.6 结构计算 主拱的整体计算采用同济大学《桥梁结构分析综合系统BSACS98》及空间分析程序Algor进行,并用Ansys有限元软件进行复核。 按照施工顺序分32个阶段进行施工阶段计算,根据应力叠加法计算各构件累加,并和汽车、挂车基本可变荷载及拱座位移、温度变化等附加荷载进行组合;并按统一理论进行主要受力构件(拱肋)的承载能力验算。 汽车、挂车横向分布系数按杠杆法计算。 拱座位移分别按沉降和后移2cm计算。 温度分别按整体升温25度和整体降温25度计算。 主桥稳定计算采用空间分析程序Algor进行,并用Ansys有限元软件进行复核。 2、引桥 引桥上部结构采用40米跨径先简支后连续刚构预应力混凝土T梁。 下部采用柱式桥墩,水中墩采用群桩基础,其它墩采用单排基础;0号桥台采用桩柱式台,28号采用肋板式桥台,桩基础。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。 主拱肋钢管第Ⅰ(Ⅺ)和Ⅱ(Ⅹ)段下弦钢管采用φ1000×22mm钢管,其余各段均采用φ1000×20mm钢管。主拱肋钢管和缀板内都灌注混凝土,采用早强、缓凝、微膨胀50号混凝土。 拱肋底部设计水位以下、常水位以上的钢管桁架外包混凝土,增强该部分拱肋防腐能力,该部分混凝土采用50号S8级防水混凝土。 拱肋预制放样时,考虑了设置32.5cm拱顶予拱度。计入予挠度的拱轴线用五次抛物线拟合,拟合的拱轴线方程为: y = 2.26652×10-3 x2 -1.14597×10-6x3+1.93355×10-8x4+3.43585×10-13x5。 坐标原点为拱顶拱肋中心,X轴为水平方向,Y轴为竖直向下。 1.2 横向联系 两道拱肋之间设有11道横撑以保证拱肋横向稳定。其中拱顶设一道钢桁架一字形横撑,其余均为钢桁架K撑。 1.3立柱、横梁 拱上立柱采用钢管混凝土结构,较高的1-4号立柱钢管截面采用φ1000 x12 m m,其它立柱钢管截面采用φ800 x12 m m,钢管内均灌注早强、缓凝、微膨胀50号混凝土。对于较高的1-4号立柱之间纵桥向和横桥向均设置剪刀撑,剪刀撑采用φ610x12mm钢管。 横梁采用预制的预应力混凝土结构,横梁内预应力钢束分两阶段张拉,予制横梁时张拉N1号钢束2根并封锚,待横梁吊装就位、桥面板架设完毕后,再张拉N2号钢束2根并封锚。锚具均采用OVM锚具。 横梁通过预埋的钢板及竖向预应力筋和立柱连接。 1.4桥面系 主桥行车道系由先张法预应力混凝土空心板(板高50厘米)、8厘米厚现浇桥面混凝土组成,桥面铺装8厘米沥青混凝土。 行车道板采用先简支后连续结构,主桥范围不设伸缩缝,仅在主桥和引桥交界的过渡墩上设置D240伸缩缝。 1.5 拱座基础 主拱拱座为分离式扩大基础。基底应落在完整中风化砂岩上,基底基本承载力按1000Kpa设计。拱座内预埋钢管应与主拱钢管焊成整体,以利于传递拱脚截面内力。主拱基础地质资料按《工程地质勘察报告》取用。 1.6 结构计算 主拱的整体计算采用同济大学《桥梁结构分析综合系统BSACS98》及空间分析程序Algor进行,并用Ansys有限元软件进行复核。 按照施工顺序分32个阶段进行施工阶段计算,根据应力叠加法计算各构件累加,并和汽车、挂车基本可变荷载及拱座位移、温度变化等附加荷载进行组合;并按统一理论进行主要受力构件(拱肋)的承载能力验算。 汽车、挂车横向分布系数按杠杆法计算。 拱座位移分别按沉降和后移2cm计算。 温度分别按整体升温25度和整体降温25度计算。 主桥稳定计算采用空间分析程序Algor进行,并用Ansys有限元软件进行复核。 2、引桥 引桥上部结构采用40米跨径先简支后连续刚构预应力混凝土T梁。 下部采用柱式桥墩,水中墩采用群桩基础,其它墩采用单排基础;0号桥台采用桩柱式台,28号采用肋板式桥台,桩基础。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。 主拱肋钢管第Ⅰ(Ⅺ)和Ⅱ(Ⅹ)段下弦钢管采用φ1000×22mm钢管,其余各段均采用φ1000×20mm钢管。主拱肋钢管和缀板内都灌注混凝土,采用早强、缓凝、微膨胀50号混凝土。 拱肋底部设计水位以下、常水位以上的钢管桁架外包混凝土,增强该部分拱肋防腐能力,该部分混凝土采用50号S8级防水混凝土。 拱肋预制放样时,考虑了设置32.5cm拱顶予拱度。计入予挠度的拱轴线用五次抛物线拟合,拟合的拱轴线方程为: y = 2.26652×10-3 x2 -1.14597×10-6x3+1.93355×10-8x4+3.43585×10-13x5。 坐标原点为拱顶拱肋中心,X轴为水平方向,Y轴为竖直向下。 1.2 横向联系 两道拱肋之间设有11道横撑以保证拱肋横向稳定。其中拱顶设一道钢桁架一字形横撑,其余均为钢桁架K撑。 1.3立柱、横梁 拱上立柱采用钢管混凝土结构,较高的1-4号立柱钢管截面采用φ1000 x12 m m,其它立柱钢管截面采用φ800 x12 m m,钢管内均灌注早强、缓凝、微膨胀50号混凝土。对于较高的1-4号立柱之间纵桥向和横桥向均设置剪刀撑,剪刀撑采用φ610x12mm钢管。 横梁采用预制的预应力混凝土结构,横梁内预应力钢束分两阶段张拉,予制横梁时张拉N1号钢束2根并封锚,待横梁吊装就位、桥面板架设完毕后,再张拉N2号钢束2根并封锚。锚具均采用OVM锚具。 横梁通过预埋的钢板及竖向预应力筋和立柱连接。 1.4桥面系 主桥行车道系由先张法预应力混凝土空心板(板高50厘米)、8厘米厚现浇桥面混凝土组成,桥面铺装8厘米沥青混凝土。 行车道板采用先简支后连续结构,主桥范围不设伸缩缝,仅在主桥和引桥交界的过渡墩上设置D240伸缩缝。 1.5 拱座基础 主拱拱座为分离式扩大基础。基底应落在完整中风化砂岩上,基底基本承载力按1000Kpa设计。拱座内预埋钢管应与主拱钢管焊成整体,以利于传递拱脚截面内力。主拱基础地质资料按《工程地质勘察报告》取用。 1.6 结构计算 主拱的整体计算采用同济大学《桥梁结构分析综合系统BSACS98》及空间分析程序Algor进行,并用Ansys有限元软件进行复核。 按照施工顺序分32个阶段进行施工阶段计算,根据应力叠加法计算各构件累加,并和汽车、挂车基本可变荷载及拱座位移、温度变化等附加荷载进行组合;并按统一理论进行主要受力构件(拱肋)的承载能力验算。 汽车、挂车横向分布系数按杠杆法计算。 拱座位移分别按沉降和后移2cm计算。 温度分别按整体升温25度和整体降温25度计算。 主桥稳定计算采用空间分析程序Algor进行,并用Ansys有限元软件进行复核。 2、引桥 引桥上部结构采用40米跨径先简支后连续刚构预应力混凝土T梁。 下部采用柱式桥墩,水中墩采用群桩基础,其它墩采用单排基础;0号桥台采用桩柱式台,28号采用肋板式桥台,桩基础。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁苤械街屑渚?6米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。 主拱肋钢管第Ⅰ(Ⅺ)和Ⅱ(Ⅹ)段下弦钢管采用φ1000×22mm钢管,其余各段均采用φ1000×20mm钢管。主拱肋钢管和缀板内都灌注混凝土,采用早强、缓凝、微膨胀50号混凝土。 拱肋底部设计水位以下、常水位以上的钢管桁架外包混凝土,增强该部分拱肋防腐能力,该部分混凝土采用50号S8级防水混凝土。 拱肋预制放样时,考虑了设置32.5cm拱顶予拱度。计入予挠度的拱轴线用五次抛物线拟合,拟合的拱轴线方程为: y = 2.26652×10-3 x2 -1.14597×10-6x3+1.93355×10-8x4+3.43585×10-13x5。 坐标原点为拱顶拱肋中心,X轴为水平方向,Y轴为竖直向下。 1.2 横向联系 两道拱肋之间设有11道横撑以保证拱肋横向稳定。其中拱顶设一道钢桁架一字形横撑,其余均为钢桁架K撑。 1.3立柱、横梁 拱上立柱采用钢管混凝土结构,较高的1-4号立柱钢管截面采用φ1000 x12 m m,其它立柱钢管截面采用φ800 x12 m m,钢管内均灌注早强、缓凝、微膨胀50号混凝土。对于较高的1-4号立柱之间纵桥向和横桥向均设置剪刀撑,剪刀撑采用φ610x12mm钢管。 横梁采用预制的预应力混凝土结构,横梁内预应力钢束分两阶段张拉,予制横梁时张拉N1号钢束2根并封锚,待横梁吊装就位、桥面板架设完毕后,再张拉N2号钢束2根并封锚。锚具均采用OVM锚具。 横梁通过预埋的钢板及竖向预应力筋和立柱连接。 1.4桥面系 主桥行车道系由先张法预应力混凝土空心板(板高50厘米)、8厘米厚现浇桥面混凝土组成,桥面铺装8厘米沥青混凝土。 行车道板采用先简支后连续结构,主桥范围不设伸缩缝,仅在主桥和引桥交界的过渡墩上设置D240伸缩缝。 1.5 拱座基础 主拱拱座为分离式扩大基础。基底应落在完整中风化砂岩上,基底基本承载力按1000Kpa设计。拱座内预埋钢管应与主拱钢管焊成整体,以利于传递拱脚截面内力。主拱基础地质资料按《工程地质勘察报告》取用。 1.6 结构计算 主拱的整体计算采用同济大学《桥梁结构分析综合系统BSACS98》及空间分析程序Algor进行,并用Ansys有限元软件进行复核。 按照施工顺序分32个阶段进行施工阶段计算,根据应力叠加法计算各构件累加,并和汽车、挂车基本可变荷载及拱座位移、温度变化等附加荷载进行组合;并按统一理论进行主要受力构件(拱肋)的承载能力验算。 汽车、挂车横向分布系数按杠杆法计算。 拱座位移分别按沉降和后移2cm计算。 温度分别按整体升温25度和整体降温25度计算。 主桥稳定计算采用空间分析程序Algor进行,并用Ansys有限元软件进行复核。 2、引桥 引桥上部结构采用40米跨径先简支后连续刚构预应力混凝土T梁。 下部采用柱式桥墩,水中墩采用群桩基础,其它墩采用单排基础;0号桥台采用桩柱式台,28号采用肋板式桥台,桩基础。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
主跨252米上承式钢管砼拱桥 1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
1.1拱肋 主桥采用净跨252米钢管混凝土桁架上承式拱桥,净矢跨比为1/6.5,主拱轴线为悬链线,拱轴系数m=1.756,拱肋为等截面钢管混凝土桁架结构。全桥共两片桁架,两桁架中到中间距16米,每片拱肋由4根φ1000mm钢管组成高5米,宽2.5米的钢管桁架,水平向由δ=12mm缀板横向连接两根主钢管。腹杆采用φ402×12mm钢管作竖向连接。
2、试桩地点:根据业主项目经理部质字[2008]第005号文件;现场必须作工艺性试桩,本标段试桩选在K28+038.3附近,地质情况与现场相符。 3、工艺性试桩目的: 为了更科学的指导施工,严格控制双向水泥土搅拌桩施工质量,在正式施工前,必须进行现场工艺性试桩,其目的是: a、检验室内试验所确定的配合比、水灰比是否合适;同时合理选择喷浆口的位置及大小(供参考的喷嘴口的位置在叶片的2/3处,喷浆口大小按现场测定); b、掌握下钻、提升的困难程度; c、确定钻头进入硬土曾电流变化情况; d、确定水泥浆液密度; e、确定合适的输浆泵的输浆量; f、掌握水泥浆到达喷浆口的时间、搅拌机提升、下沉、复搅提升速度等参数; g、验证成桩的均匀度及试桩桩径大小; h、验证钻头叶片的角度设置; 4、试桩桩位布置:按正三角形布置,桩径d=0.5m, 10m长的桩桩距a=1.0m、试桩时,10m桩做3根试验桩,水泥用量为58Kg/m。水泥采用河北唐山六九水泥厂Po32.5普通硅酸盐水泥,水灰比按1:0.5。 试桩简图如下。